数表

Description

  有一张 n*m 的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除 i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

  输入包含多组数据。

  输入的第一行一个整数Q,表示测试点内的数据组数;

  接下来Q行,每行三个整数n,m,a(|a|<=10^9 )描述一组数据。

Output

  对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

Hint

不妨设\(n<m\)。

同时整除\(i,j\)的自然数之和就是\(gcd(i,j)\)的约数之和。我们设\(f(i)=\sum_{d|i}d\)。

则:

\[\displaystyle ans=\sum_{g=1}^{n}f(g)\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{g} \rfloor}[gcd(i,j)=1]\\
=\sum_{g=1}^{n}f(g)\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{g} \rfloor}\sum_{d|i,d|j}\mu(d)
\]

又来套路一波:设\(T=gd\),\(\displaystyle ans=\sum_{T=1}^{n}\sum_{d|T}\mu(d)f(\frac{n}{d})\lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor\)。

然后又了a的限制后,我们就将询问和\(f\)都离线下来排序,加入树状数组里面。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#include<queue>
#include<iomanip>
#define ll long long
#define N 100005
#define int ll using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int Q;
int pri[N];
bool vis[N];
ll sum[N];
int mu[N];
struct node {
int id;
ll sum;
bool operator <(const node &a)const {
return sum<a.sum;
}
}st[N];
int cnt;
struct query {
int n,m,id;
ll a;
bool operator <(const query &x)const {return a<x.a;}
}q[20005]; void pre(int n) {
mu[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) {
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0]&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j+=i) {
sum[j]+=i;
}
}
cnt=n;
for(int i=1;i<=n;i++) st[i]=(node) {i,sum[i]};
} ll tem[N];
int low(int i) {return i&(-i);}
const ll mod=(1ll<<31);
void add(int v,ll f) {for(int i=v;i<=100000;i+=low(i)) (tem[i]+=f)%=mod;}
void update(int v) {
for(int i=v;i<=100000;i+=v) {
if(!mu[i/v]) continue ;
add(i,(sum[v]*mu[i/v]%mod+mod)%mod);
}
} ll Ask(int v) {
ll ans=0;
for(int i=v;i;i-=low(i)) (ans+=tem[i])%=mod;
return ans;
}
ll Ask(int l,int r) {return (Ask(r)-Ask(l-1)+mod)%mod;}
ll ans[20005];
int now; ll solve(int n,int m) {
if(n>m) swap(n,m);
int last;
ll ans=0;
for(int i=1;i<=n;i=last+1) {
last=min(n/(n/i),m/(m/i));
(ans+=1ll*(n/i)*(m/i)%mod*Ask(i,last)%mod)%=mod;
}
return ans;
} signed main() {
pre(100000);
sort(st+1,st+1+cnt);
Q=Get();
for(int i=1;i<=Q;i++) {
q[i].n=Get(),q[i].m=Get(),q[i].a=Get();
q[i].id=i;
}
sort(q+1,q+1+Q);
int tag=1;
for(int i=1;i<=Q;i++) {
while(tag<=cnt&&st[tag].sum<=q[i].a) {
update(st[tag].id);
tag++;
}
now=i;
ans[q[i].id]=solve(q[i].n,q[i].m);
}
for(int i=1;i<=Q;i++) cout<<ans[i]<<"\n";
return 0;
}

【BZOJ3529】数表的更多相关文章

  1. [BZOJ3529]数表

    假设$n\leq m$,我们先不考虑$\leq a$的限制 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sigma((i,j))=\sum\limits_{T=1} ...

  2. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  3. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  4. [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演

    数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...

  5. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  6. 【BZOJ3529】【SDOI2014】 数表

    Time Limit: 10 Sec Memory Limit: 512 MB Description ​ 有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le ...

  7. 【BZOJ3529】【SDOI2014】数表

    Time Limit: 1000 ms Memory Limit: 512 MB Description 有一张n×m的数表,其第i行第j列 (1≤i≤n,1≤j≤m)的数值为能同时整除i和j的所有自 ...

  8. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  9. 【SDOI2014】【BZOJ3529】数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼.1 < =j < =m)的数值为 能同一时候整除i和j的全部自然数之和.给定a,计算数表中不 ...

随机推荐

  1. Hibernate学习(二)———— 一级缓存和三种状态解析

    一.一级缓存和快照 什么是一级缓存呢? 很简单,每次hibernate跟数据库打交道时,都是通过session来对要操作的对象取得关联,然后在进行操作,那么具体的过程是什么样的呢? 1.首先sessi ...

  2. Windows版本redis高可用方案探究

    目录 Windows版本redis高可用方案探究 前言 搭建redis主从 配置主redis-28380 配置从redis-23381 配置从redis-23382 将redis部署为服务 启动red ...

  3. FFmpeg使用基础

    本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10297002.html 本文介绍FFmpeg最基础的概念,了解FFmpeg的简单使用,帮 ...

  4. [转]bootstrapValidator.js 做表单验证

    本文转自:https://www.cnblogs.com/nele/p/5493414.html 作者:@nele本文为作者原创,转载请注明出处:https://www.cnblogs.com/nel ...

  5. JavaWeb总结(国税)

    一.JavaWeb示例 1.1.Servlet Hello World&IDEA创建第一个Servlet 新建项目 选择maven 组织名与项目名 位置,完成 允许自动导入包 添加框架支持,变 ...

  6. oracle创建用户、创建表空间、授权、建表

    2.然后我就可以来创建用户了. create user zzg identified by zzg123; 3.创建好用户我们接着就可以修改用户的密码. alter user zzg identifi ...

  7. c# 获取客户端文件

    /// <summary> /// 获取有效客户端文件控件集合,文件控件必须上传了内容,为空将被忽略, /// 注意:Form标记必须加入属性 enctype="multipar ...

  8. LINQ 小项目【组合查询、分页】

    使用 linq 在网页上对用户信息增删改,组合查询,分页显示 using System; using System.Collections.Generic; using System.Linq; us ...

  9. 23种设计模式+J2EE设计模式学习笔记-初识设计模式

    设计模式简介: 设计模式是一套被反复使用的.多数人知晓的.经过分类编目的.代码设计经验的总结.(个人理解:设计模式是不关乎业务,逻辑实现,针对普遍问题的一种解决方案). 设计模式的类型: 传统23种设 ...

  10. [转]Serif和Sans-serif字体的区别

    在西方国家罗马字母阵营中,字体分为两大种类:Sans Serif和Serif,打字机体虽然也属于Sans Serif,但由于是等宽字体,所以另外独立出Monospace这一种类,例如在Web中,表示代 ...