数表

Description

  有一张 n*m 的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除 i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

  输入包含多组数据。

  输入的第一行一个整数Q,表示测试点内的数据组数;

  接下来Q行,每行三个整数n,m,a(|a|<=10^9 )描述一组数据。

Output

  对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

Hint

不妨设\(n<m\)。

同时整除\(i,j\)的自然数之和就是\(gcd(i,j)\)的约数之和。我们设\(f(i)=\sum_{d|i}d\)。

则:

\[\displaystyle ans=\sum_{g=1}^{n}f(g)\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{g} \rfloor}[gcd(i,j)=1]\\
=\sum_{g=1}^{n}f(g)\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{g} \rfloor}\sum_{d|i,d|j}\mu(d)
\]

又来套路一波:设\(T=gd\),\(\displaystyle ans=\sum_{T=1}^{n}\sum_{d|T}\mu(d)f(\frac{n}{d})\lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor\)。

然后又了a的限制后,我们就将询问和\(f\)都离线下来排序,加入树状数组里面。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#include<queue>
#include<iomanip>
#define ll long long
#define N 100005
#define int ll using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int Q;
int pri[N];
bool vis[N];
ll sum[N];
int mu[N];
struct node {
int id;
ll sum;
bool operator <(const node &a)const {
return sum<a.sum;
}
}st[N];
int cnt;
struct query {
int n,m,id;
ll a;
bool operator <(const query &x)const {return a<x.a;}
}q[20005]; void pre(int n) {
mu[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) {
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0]&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j+=i) {
sum[j]+=i;
}
}
cnt=n;
for(int i=1;i<=n;i++) st[i]=(node) {i,sum[i]};
} ll tem[N];
int low(int i) {return i&(-i);}
const ll mod=(1ll<<31);
void add(int v,ll f) {for(int i=v;i<=100000;i+=low(i)) (tem[i]+=f)%=mod;}
void update(int v) {
for(int i=v;i<=100000;i+=v) {
if(!mu[i/v]) continue ;
add(i,(sum[v]*mu[i/v]%mod+mod)%mod);
}
} ll Ask(int v) {
ll ans=0;
for(int i=v;i;i-=low(i)) (ans+=tem[i])%=mod;
return ans;
}
ll Ask(int l,int r) {return (Ask(r)-Ask(l-1)+mod)%mod;}
ll ans[20005];
int now; ll solve(int n,int m) {
if(n>m) swap(n,m);
int last;
ll ans=0;
for(int i=1;i<=n;i=last+1) {
last=min(n/(n/i),m/(m/i));
(ans+=1ll*(n/i)*(m/i)%mod*Ask(i,last)%mod)%=mod;
}
return ans;
} signed main() {
pre(100000);
sort(st+1,st+1+cnt);
Q=Get();
for(int i=1;i<=Q;i++) {
q[i].n=Get(),q[i].m=Get(),q[i].a=Get();
q[i].id=i;
}
sort(q+1,q+1+Q);
int tag=1;
for(int i=1;i<=Q;i++) {
while(tag<=cnt&&st[tag].sum<=q[i].a) {
update(st[tag].id);
tag++;
}
now=i;
ans[q[i].id]=solve(q[i].n,q[i].m);
}
for(int i=1;i<=Q;i++) cout<<ans[i]<<"\n";
return 0;
}

【BZOJ3529】数表的更多相关文章

  1. [BZOJ3529]数表

    假设$n\leq m$,我们先不考虑$\leq a$的限制 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sigma((i,j))=\sum\limits_{T=1} ...

  2. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  3. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  4. [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演

    数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...

  5. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  6. 【BZOJ3529】【SDOI2014】 数表

    Time Limit: 10 Sec Memory Limit: 512 MB Description ​ 有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le ...

  7. 【BZOJ3529】【SDOI2014】数表

    Time Limit: 1000 ms Memory Limit: 512 MB Description 有一张n×m的数表,其第i行第j列 (1≤i≤n,1≤j≤m)的数值为能同时整除i和j的所有自 ...

  8. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  9. 【SDOI2014】【BZOJ3529】数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼.1 < =j < =m)的数值为 能同一时候整除i和j的全部自然数之和.给定a,计算数表中不 ...

随机推荐

  1. ASP.NET MVC 5 Authentication Breakdown

    In my previous post, "ASP.NET MVC 5 Authentication Breakdown", I broke down all the parts ...

  2. Angular2入门:TypeScript的类型 - 类型、null、undefined

  3. 将应用代码由eclipse导入Android studio的方法NDK-Build和Cmake两种方法(以android_serialport_api为例)

    网上翻了几百篇博客,看了半天,要不就是写的乱七八糟看不懂,要不就是隐藏了一些细节,要不就是实现不了,最后还是在Android官网上看明白了,而且说得有条有理,以后遇到不懂的一定要先翻官网. 参考资料: ...

  4. 在服务器上搭建wordpress个人博客 php7.2+nginx+mysql+wordperss

    买了台VPS,准备搭建一个博客.用过几个博客框架还是觉得Wordpress好用.主题多,插件也非常的便利,而且大多还免费开源.搭建也很简单,其实安装好php+mysql+nginx+wordpress ...

  5. DataTable的一个简单的扩展

    我们在调试代码的时候经常遇到DataTable的数据类型错误,这个类可以帮助我们很快查看DataTable的结构信息. /// <summary> /// DataTable扩展类 /// ...

  6. mysql游标中使用临时表

    有时候需我们要组合几张表的数据,在存储过程中,经过比较复杂的运算获取结果直接输出给调用方,比如符合条件的几张表的某些字段的组合计算,mysql临时表可以解决这个问题. 所谓临时表:只有在当前连接情况下 ...

  7. MySQL分库分表浅谈

    一.分库分表类型 1.单库单表 所有数据都放在一个库,一张表. 2.单库多表 数据在一个库,单表水平切分多张表. 3.多库多表 数据库水平切分,表也水平切分. 二.分库分表查询 通过分库分表规则查找到 ...

  8. linq使用Take和Skip实现分页

    ;//第1页 ;//页大小 var list = list.Skip((pageIndex-1) * pageSize).Take(pageSize).ToList();

  9. APP如何进行通信的

    什么是B/S架构(Browser/server):浏览器和服务器架构

  10. python爬虫入门---第四篇:网站对爬虫的限制及突破测试

    大部分网站对网络爬虫都有限制,限制方式有两种: 一.Robots协议:二.网站通过判断对网站访问http的头部信息来查看是否是爬虫,并对爬虫做相关拦截 第一种限制是书面限制,第二种是强制性阻拦限制.那 ...