TensorFlow笔记之常见七个参数
对TensorFlow深度学习中常见参数的总结分析
神经网络中常见的参数有:初始学习率、学习率衰减率、隐藏层节点数量、迭代轮数、正则化系数、滑动平均衰减率、批训练数量七个参数。 对这七个参数,大部分情况下,神经网络的参数选优是通过实验来调整的。 一个想法是,通过测试数据来评判参数的效果,但是这种方法会导致过拟合测试数据,失去评判未知数据的意义。而我们训练神经网络的目的,恰恰是为了预测未知数据。 所以,为了评判各种参数的效果,一般会从训练数据中抽取一部分作为验证数据。 验证数据的选取方法也是非常重要的,一般来说选取的验证数据分布越接近测试数据分布,模型在验证数据上的表现越可以体现模型在测试数据上的表现。
不同参数模型的效果比较
以前提到过,设计神经网络时候的
5种优化方法。一个是神经网络结构设计上,需要使用激活函数和多层隐藏层;另一个是,神经网路优化时,可以使用指数衰减的学习率、加入正则化的损失函数、滑动平均模型。 影响最大的是:调整神经网络的结构,包括隐藏层和激活函数。这说明,神经网络的结构对最终模型的效果有本质影响。 另外的,滑动平均模型、指数衰减率和正则化项对正确率的提升并不是特别明显。这是因为滑动平均模型和指数衰减的学习率在一定程度上都是限制神经网络中参数更新的速度。如果模型的收敛速度很快,这两种优化对最终模型的影响不大。 这两个个优化手段,能否说优化作用不大呢? 其实不是的。当问题更加复杂时,迭代不会这么快接近收敛,这时候滑动平均模型和指数衰减的学习率可以发挥更大的作用。 还有一个正则化项,对模型效果带来的提升要相对显著。使用了正则化项损失函数的神经网络模型可以降低大约6%的错误率。 只优化交叉熵的模型可以更好的拟合训练数据(交叉熵损失更小),但是却不能很好的挖掘数据中潜在的规律来判断未知的测试数据,所以在测试数据上正确率低。
总结一下的话,激活函数和隐藏层对模型的效果带来质的飞跃;滑动平均模型、学习率衰减率、正则化项对最终正确率的提升效果不明显,但是需要解决的问题和使用的神经网络更加复杂时,这些优化方法将更有可能对训练效果产生更大的影响。
TensorFlow笔记之常见七个参数的更多相关文章
- tensorflow笔记(一)之基础知识
tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇no ...
- tensorflow笔记(三)之 tensorboard的使用
tensorflow笔记(三)之 tensorboard的使用 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7429344.h ...
- tensorflow笔记(四)之MNIST手写识别系列一
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
- tensorflow笔记:多层LSTM代码分析
tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...
- 深度学习Bible学习笔记:第七章 深度学习中的正则化
一.正则化介绍 问题:为什么要正则化? NFL(没有免费的午餐)定理: 没有一种ML算法总是比别的好 好算法和坏算法的期望值相同,甚至最优算法跟随机猜测一样 前提:所有问题等概率出现且同等重要 实际并 ...
- TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点
TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣, ...
- TensorFlow笔记-07-神经网络优化-学习率,滑动平均
TensorFlow笔记-07-神经网络优化-学习率,滑动平均 学习率 学习率 learning_rate: 表示了每次参数更新的幅度大小.学习率过大,会导致待优化的参数在最小值附近波动,不收敛:学习 ...
- TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...
随机推荐
- 第27课 可变参数模板(8)_TupleHelper
1. TupleHelper的主要功能 (1)打印:由于tuple中的元素是可变参数模板,外部并不知道内部到底是什么数据,有时调试时需要知道其具体值,希望能打印出tuple中所有的元素值. (2)根据 ...
- Error when loading the SDK 发现了以元素 'd:skin' 开头的无效内容。此处不应含有子元素
Error when loading the SDK: Error: Error parsing D:\DIRS\Java\android-sdk-windows\system-images\andr ...
- 10-安装es
1.安装jdk(jdk要求1.8.20或1.7.55以上) 2.上传es安装包 3.解压es tar -zxvf elasticsearch-2.3.1.tar.gz -C /opt/app/ 4.e ...
- ubuntu 16.04 mysql5.7.17 开放远程3306端口
ubuntu 16.04 mysql5.7.17 开放远程3306端口 原创 2017年01月19日 20:33:27 标签: mysql / ubuntu 2644 开启mysql的远程访问权限 默 ...
- java中存在三种调用机制
1:同步调用:一种阻塞式调用,调用方要等待对方执行完毕才返回,它是一种单向调用 2:回调:一种双向调用模式,也就是说,被调用方在接口被调用时也会调用对方的接口: 3:异步调用:一种类似消息或事件的机制 ...
- java——IO流01
移动文件有一种简单方法,不需要复制文件再删除文件. package com.unir.test01; import java.io.File; import java.io.IOException; ...
- Maven Return code is: 401
maven 打包到仓库 需要配置认证: setting.xml <server><id>releases</id><username>admin< ...
- java判断是否是数字
1.用JAVA自带的函数 public static boolean isNumeric(String str){ for (int i = 0; i < str.length(); i++){ ...
- ubuntu系统中安装eclipse
具体可以看这篇博文 .https://www.cnblogs.com/sanduo1314/articles/5137090.html 然后再/usr/share/applications中找到ecl ...
- k8s之配置flanneld网络
Flannel是Overlay网络的一种,也是将源数据包封装在另一种网络包里面进行路由转发和通信,目前已经支持UDP.VXLAN.AWS VPC和GCE路由等数据转发方式. Flannel通过给每台宿 ...