【CF666C】Codeword 结论题+暴力
【CF666C】Codeword
题意:一开始有一个字符串s,有m个事件,每个事件形如:
1.用一个新的字符串t来替换s
2.给出n,问有多少个长度为n的小写字母组成的字符串满足包含s作为其一个子序列?答案$\mod 10^9+7$
$m,n,\sum |t|\le 10^5$
题解:有一个结论:答案只与n和|s|有关,与s到底是什么无关。我们只考虑s在母串中第一次出现的位置。设$|s|=k$,假如s的每个字符出现的位置分别是$p_1p_2...p_k$,则对于$i\in [1,k]$,$(p_{i-1},p_i)$之间的字符都不能是$s_i$,所以这些位置都有25种可能。然后我们就可以将我们发现的结论形式化的写出来了。我们枚举$p_k$的位置,则有:
$ans=\sum\limits_{i=k}^{n}C_{i-1}^{k-1}\alpha^{n-i}(\alpha-1)^{i-k}$
但是如果我们每次都暴力计算的话复杂度难以接受。不过我们发现本质不同的|s|只有$\sqrt n$种,所以我们去重,然后将式子改写为:
$ans=\alpha^{n}\sum\limits_{i=k}^nC_{i-1}^{k-1}\alpha^{-i}(\alpha-1)^{i-k}$
我们对于每个|s|都预处理出后面那些东西,便可做到$O(1)$回答询问,时间复杂度$O(m\sqrt n)$。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=100010;
const ll P=1000000007;
int m,N,tot;
struct node
{
int n,len,org;
}p[maxn];
char str[maxn];
ll jc[maxn],ine[maxn],jcc[maxn],q[maxn],q1[maxn],qi[maxn],s[maxn],ans[maxn];
bool cmp(const node &a,const node &b)
{
return a.len<b.len;
}
inline ll c(int a,int b)
{
if(a<b) return 0;
return jc[a]*jcc[a-b]%P*jcc[b]%P;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
m=rd(),scanf("%s",str),N=100000;
int i,j,a=strlen(str),b;
for(i=1;i<=m;i++)
{
if(rd()==1) scanf("%s",str),a=strlen(str);
else b=rd(),p[++tot].len=a,p[tot].n=b,p[tot].org=tot;
}
ine[0]=ine[1]=jc[0]=jc[1]=jcc[0]=jcc[1]=1;
for(i=2;i<=N;i++) jc[i]=jc[i-1]*i%P,ine[i]=P-(P/i)*ine[P%i]%P,jcc[i]=jcc[i-1]*ine[i]%P;
for(q[0]=q1[0]=qi[0]=i=1;i<=N;i++) q[i]=q[i-1]*26%P,q1[i]=q1[i-1]*25%P,qi[i]=qi[i-1]*ine[26]%P;
sort(p+1,p+tot+1,cmp);
for(i=1;i<=tot;i++)
{
a=p[i].len,b=p[i].n;
if(a!=p[i-1].len)
{
memset(s,0,sizeof(s[0])*a);
for(j=a;j<=N;j++) s[j]=(s[j-1]+q1[j-a]*qi[j]%P*c(j-1,a-1))%P;
}
ans[p[i].org]=q[b]*s[b]%P;
}
for(i=1;i<=tot;i++) printf("%lld\n",ans[i]);
return 0;
}
【CF666C】Codeword 结论题+暴力的更多相关文章
- [codevs5578][咸鱼]tarjan/结论题
5578 咸鱼 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...
- BZOJ_1367_[Baltic2004]sequence_结论题+可并堆
BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- 【uoj#175】新年的网警 结论题+Hash
题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...
- 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组
题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...
- 【bzoj4401】块的计数 结论题
题目描述 给出一棵n个点的树,求有多少个si使得整棵树可以分为n/si个连通块. 输入 第一行一个正整数N,表示这棵树的结点总数,接下来N-1行,每行两个数字X,Y表示编号为X的结点与编号为Y的结点相 ...
- 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp
题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- 【bzoj2079】[Poi2010]Guilds 构造结论题
题目描述 Zy皇帝面临一个严峻的问题,两个互相抵触的贸易团体,YYD工会和FSR工会,他们在同一时间请求在王国各个城市开办自己的办事处.这里有n个城市,其中有一些以双向马路相连,这两个工会要求每个城市 ...
随机推荐
- JS_高程5.引用类型(4)Array类型的各类方法
一.转换方法 所有的对象都具有toLocaleString(),toString()和valueOf()方法.调用toString()方法会返回由数组中的每个值的字符串拼接而成的一个以逗号分隔的字符串 ...
- 当前线程不在单线程单元中,因此无法实例化 ActiveX 控件“8856f961-340a-11d0-a96“
在做采集时,有些网页因服务器限制用webclient或者webrequest不能获取html,这时我们可以用webbrowser的方法来绕过对方服务器的限制,但是在实例化webbrowser 的时候发 ...
- LVM原理与实现
一.什么是LVM 不管是使用传统的MBR分区方式或者是GPT的分区方式,在最后数据量逐渐变大的过程中都会出现空间不足的情况,但是若是使用将此分区的数据全部迁移至一个更大空间的磁盘上的迁移时间也是不可想 ...
- gpg使用说明
http://blog.163.com/ywz_306/blog/static/13257711201121921452480/
- js 图片base64转file文件的两种方式
js 图片base64转file文件的两种方式 https://blog.csdn.net/yin13037173186/article/details/83302628 //将base64转换为bl ...
- SSH + Google Authenticator 安全加固
1. SSH连接 Secure Shell(安全外壳协议,简称SSH)是一种加密的网络传输协议,可在不安全的网络中为网络服务提供安全的传输环境.SSH通过在网络中创建安全隧道来实现SSH客户端与服务器 ...
- Jupyter notebook安装扩展插件
1. 安装Jupyter Notebook pip install jupyter 2. 安装Jypyter Notebook扩展包 pip install jupyter_contrib_nbext ...
- [dubbo] Dubbo API 笔记——配置参考
schema 配置参考 所有配置项分为三大类 服务发现:表示该配置项用于服务的注册与发现,目的是让消费方找到提供方 服务治理:表示该配置项用于治理服务间的关系,或为开发测试提供便利条件 性能调优:表示 ...
- webstorm激活方法webstorm注册码 jetbrains激活
安装完成后,打开 WebStorm, 在打开的 License Activation 窗口中选择 License server. 在输入框输入网址即可: http://idea.codebeta.cn ...
- 【VS2019】F12跳转到源码,关闭浏览器不停止项目【转】
[VS2019]F12跳转到源码 1.工具->选项 2.文本编辑器->C#->高级->勾选支持导航到反编译源码 3.关闭浏览器不停止项目