The perception and large margin classifiers
假设样例按照到来的先后顺序依次定义为
。为样本特征,
为类别标签。任务是到来一个样例
,给出其类别结果
的预测值,之后我们会看到真实值
,然后根据真实值来重新调整模型参数,整个过程是重复迭代的过程,直到所有的样例完成。这么看来,我们也可以将原来用于批量学习的样例拿来作为在线学习的样例。在在线学习中,我们主要关注在整个预测过程中预测错误的样例数。
用表示正例,
表示负例,支持向量机中提到的感知算法(perception algorithm),我们的假设函数为:

其中,x是n维特征向量,
是n+1维参数权重。函数g用来将
计算结果映射到-1和1上。具体公式如下:

提出一个在线学习算法如下:
新来一个样例
,我们先用从之前样例学习到的
来得到样例的预测值y,如果
(即预测正确),那么不改变
,反之

如果对于预测错误的样例,
进行调整时只需加上(实际上为正例)或者减去(实际负例)样本特征x值即可。
初始值为向量0。这里我们关心的是
的符号,而不是它的具体值。调整方法非常简单,然而这个简单的调整方法还是很有效的,它的错误率不仅是有上界的,而且这个上界不依赖于样例数和特征维度。
下面定理阐述了错误率上界:
定理(Block and Novikoff):
给定按照顺序到来的
样例。假设对于所有的样例
,也就是说特征向量长度有界为D。更进一步,假设存在一个单位长度向量
且
。也就是说对于y=1的正例,
,反例
,u能够有
的间隔将正例和反例分开。那么感知算法的预测的错误样例数不超过
。
根据对SVM的理解,这个定理就可以阐述为:如果训练样本线性可分,并且几何间距至少是
,样例样本特征向量最长为D,那么感知算法错误数不会超过
。这个定理是62年提出的,63年Vapnik提出SVM,可见提出也不是偶然的,感知算法也许是当时的热门。
下面主要讨论这个定理的证明:
感知算法只在样例预测错误时进行更新,定义
是第k次预测错误时使用的样本特征权重,
初始化为0向量。假设第k次预测错误发生在样例
上,利用
计算
值时得到的结果不正确(也就是说
,调换x和
顺序主要是为了书写方便)。也就是说下面的公式成立:

根据感知算法的更新方法,我们有
。这时候,两边都乘以u得到

两个向量做内积的时候,放在左边还是右边无所谓,转置符号标注正确即可。
这个式子是个递推公式,就像等差数列一样f(n+1)=f(n)+d,由此我们可得:

因为初始
为0,下面我们利用前面推导出的
和
得到

也就是说
的长度平方不会超过
与D的平方和。
又是一个等差不等式,得到:

两边开根号得:

其中第二步可能有点迷惑,我们细想u是单位向量的话,

因此上面的不等式成立,最后得到:

也就是预测错误的数目不会超过样本特征向量x的最长长度与几何间隔的平方,实际上整个调整过程中
就是x的线性组合。
整个感知算法应该是在线学习中最简单的一种了。
The perception and large margin classifiers的更多相关文章
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
- Large Margin Softmax Loss for Speaker Verification
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...
- cosface: large margin cosine loss for deep face recognition
目录 概 主要内容 Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition ...
- Large Margin DAGs for Multiclass Classification
Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...
- 吴恩达机器学习笔记43-SVM大边界分类背后的数学(Mathematics Behind Large Margin Classification of SVM)
假设我有两个向量,
- 吴恩达机器学习笔记42-大边界的直观理解(Large Margin Intuition)
这是我的支持向量机模型的代价函数,在左边这里我画出了关于
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Coursera, Machine Learning, SVM
Support Vector Machine (large margin classifiers ) 1. cost function and hypothesis 下面那个紫色线就是SVM 的cos ...
随机推荐
- string转数组, 数组转ist, list转数组, 数组转string
private string OrderBonds(string bonds) { string[] lists = bonds.Split(','); List<string> newL ...
- 【转】Ubuntu英文系统下安装中文输入法
转自:https://my.oschina.net/No5stranger/blog/290026 ubuntu默认的输入法是ibus,综合网上评论,fcitx的支持者更多,而且个人感觉fcitx也的 ...
- learning makefile 定义命令包
- Android开发 ---Media
1.ctivity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...
- 使用GraphHttpClient调用Microsoft Graph接口 - POST
博客地址:http://blog.csdn.net/FoxDave 本篇接上一讲,我们继续看如何通过GraphHttpClient创建一个Office 365的组,需要使用POST请求. 为结果添加按 ...
- 关于LaTeX公式排版
[转载请注明出处]http://www.cnblogs.com/mashiqi 2017/10/05 1.居中括号框住多行公式 \begin{equation*} \left\{\begin{alig ...
- Spring Cloud 请求重试机制核心代码分析
场景 发布微服务的操作一般都是打完新代码的包,kill掉在跑的应用,替换新的包,启动. spring cloud 中使用eureka为注册中心,它是允许服务列表数据的延迟性的,就是说即使应用已经不在服 ...
- 《深入.NET平台和C#编程》内部测试题-笔试试卷答案
1) 以下关于序列化和反序列化的描述错误的是( C). a) 序列化是将对象的状态存储到特定存储介质中的过程 b) 二进制格式化器的Serialize()和Deseria ...
- Java 8 中常用的函数式接口
函数式接口 函数描述符 Predicate<T> T->boolean Consumer<T> T->void Function<T, R> T-> ...
- 【转】matlab学习(5) 读取excel文件
转自:https://blog.csdn.net/thy19988/article/details/78489623 1.使用函数xlsread读取单个文件(1)num=xlsread(filenam ...