【BZOJ2302】[HAOI2011]Problem C(动态规划)

题面

BZOJ

洛谷

题解

首先如果\(m=0\)即没有特殊限制的话,那么就和这道题目基本上是一样的。

然而这题也有属于这题的性质,发现座位数和人数是一样的。

那么一种方案是合法的,当且仅当编号小于等于这个位置\(i\)的人数不小于\(i\)。

首先把不合法直接判掉,考虑存在合法状态的情况。

设\(f[i][j]\)表示有\(j\)个人的编号小于等于\(i\)的方案数。显然\(i\le j\)。

考虑如何转移,我们显然从\(i-1\)转移到\(i\)。那么我们考虑枚举选择的编号恰好为\(i\)的人数。首先被钦定的人是不能动的,能够动的只有不被钦定的人,这一部分枚举人数之后组合转移,而被钦定的人直接转移。

这就做完了。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 305
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,MOD;
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int C[MAX][MAX],f[MAX][MAX],num[MAX];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();MOD=read();
memset(num,0,sizeof(num));
for(int i=1;i<=m;++i)read(),num[read()]+=1;
for(int i=1;i<=n;++i)num[i]+=num[i-1];
bool fl=true;
for(int i=1;i<=n;++i)
if(m-num[i-1]>n-i+1)fl=false;
if(!fl){puts("NO");continue;}
for(int i=0;i<=n;++i)C[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=i-1;j<=n;++j)
for(int k=0;k<=n-m-j+num[i-1];++k)
add(f[i][j+num[i]-num[i-1]+k],1ll*f[i-1][j]*C[n-m-j+num[i-1]][k]%MOD);
printf("YES %d\n",f[n][n]);
}
return 0;
}

【BZOJ2302】[HAOI2011]Problem C(动态规划)的更多相关文章

  1. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  2. BZOJ2302 [HAOI2011]Problem c

    Description 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了, ...

  3. BZOJ2302 [HAOI2011]Problem c 【dp】

    题目 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,a ...

  4. luogu 2519 [HAOI2011]problem a 动态规划+树状数组

    发现每一次 $[b[i]+1,n-a[i]]$ 这个区间的分数必须相同,否则不合法. 而一个相同的区间 $[l,r]$ 最多只能出现区间长度次. 于是,就得到了一个 $dp:$ 将每一种区间的出现次数 ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  7. HAOI2011 problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1047  Solved: 434[Submit][ ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4164  Solved: 1888[Submit] ...

随机推荐

  1. electron 开发实时加载

    第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...

  2. 蓝牙baseband概述

    从蓝牙specispecification中看,基带协议主要分为8个部分来介绍的,分别是概述.物理信道.物理连接.逻辑传输.逻辑连接.封包.比特流的处理.组网行为.这里面会涉及到很多的概念,主要是在概 ...

  3. [JDBC]ORA-01000: 超出打开游标的最大数(ORA-01000: maximum open cursors exceeded)

    问题产生的原因: Java代码在执行conn.createStatement()和conn.prepareStatement()的时候,相当于在数据库中打开了一个cursor.由于oracle对打开的 ...

  4. Docker(三):Dockerfile 命令详解

    上一篇文章Docker(二):Dockerfile 使用介绍介绍了 Dockerfile 的使用,这篇文章我们来继续了解 Dockerfile ,学习 Dockerfile 各种命令的使用. Dock ...

  5. vsftpd虚拟账户配置

    1. 概述 FTP是文件传输协议,在内外网的文件传输中使用广泛. 本篇博客主要介绍FTP服务器的部署和测试. 2. 软件环境部署 查看系统是否安装FTP软件(vsftpd),执行命令:rpm -qa ...

  6. Vue2.0 搭配 axios

    1.安装axios $ npm install axios 2.Demo (1)Get // 为给定 ID 的 user 创建请求 axios.get('/user?ID=12345') .then( ...

  7. C#_Math函数总结

    Math.abs() 计算绝对值. Math.acos() 计算反余弦值. Math.asin() 计算反正弦值. Math.atan() 计算反正切值. Math.atan2() 计算从x 坐标轴到 ...

  8. Daily Scrum NO.9

    工作概况 符美潇 昨日完成的工作 1.Daily Scrum.日常会议及日常工作的分配和查收. 2.根据第二小组的要求对数据库表的属性进行修改. 今日工作 1.Daily Scrum.日常会议及日常工 ...

  9. 《Linux内核设计与实现》读书笔记三

    Chapter 18 调 试 18.1 准备开始 1.准备工作: 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 2.执行foo就会让程序立即产生核心信息转储(dump core). ...

  10. Leetcode——171.宝石与石头

    水题: 给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头. S 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石. J 中的字母不重复,J 和 S中的所有字符 ...