MT【236】必要性探路
$\dfrac{lnx}{x+1}+\dfrac{1}{x}>\dfrac{lnx}{x-1}+\dfrac{k}{x}$对于任意$x>0$成立,求$k$的范围.

解答:由题意,对任意$x>0,k<1-\dfrac{2xlnx}{x^2-1}$下面求$\dfrac{2xlnx}{x^2-1}$的最大值.
用洛必达法则
$\lim\limits_{x\longrightarrow 1}\dfrac{2xlnx}{x^2-1}=\lim\limits_{x\longrightarrow 1}\dfrac{2lnx+2}{2x}=1$
下证:$\dfrac{2xlnx}{x^2-1}\le1$构造函数$g(x)=x^2-1-2xlnx$分$x>1,0<x<1$易证.从而$k<0$
MT【236】必要性探路的更多相关文章
- MT【296】必要性探路
已知$a,b\in R.f(x)=e^x-ax+b$,若$f(x)\ge1$恒成立,则$\dfrac{b-a}{a}$的取值范围_____ 提示:答案:$[-1,\infty)$取$x=0,b\ge0 ...
- MT【288】必要性探路
已知$f(x)=e^x-\dfrac{1}{2}ax^2-b$(1)当$a=1,b=1$时,求$f(x)$在$[-1,1]$上的值域.(2)若对于任意实数$x$,$f(x)\ge0$恒成立,求$a+b ...
- MT【184】$\epsilon$助力必要性
已知满足不等式$|x^2-4x+a|+|x-3|\le5$的最大值为$3$,求实数$a$的值,并解该不等式. 证明:1)当$x=3$时,$|a-3|\le5$,得$a\in[-2,8]$2)$\for ...
- Android Weekly Notes Issue #236
Android Weekly Issue #236 December 18th, 2016 Android Weekly Issue #236 本期内容包括: Google的物联网平台Android ...
- winform开发 总结1>winform程序使用线程的必要性,以及正确的使用方式
winform程序中使用线程的必要性: 单线程操作在执行耗时任务时会造成界面假死,带来非常差劲的用户体验,有时候甚至会影响到正常的业务执行,使用多线程做相关操作实属不得已之举. 那么在编写程序之前必须 ...
- xamarin(3.9.236)里DATETIMENOW的错误。
[ERROR] FATAL UNHANDLED EXCEPTION: System.EntryPointNotFoundException: monodroid_get_system_property ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- Dynamics AX 2012 在BI分析中建立数据仓库的必要性
AX系统已有的BI分析架构 对于AX 的BI分析架构,相信大家都了解,可以看Reinhard之前的译文[译]Dynamics AX 2012 R2 BI系列-分析的架构 . AX 的BI分析架构的优势 ...
- 理解TCP三次握手/四次断开的必要性
1 TCP的三次握手与必要性 (1)三次握手图 (2)必要性:TCP通过三次握手建立可靠的(确保收到)的全双工通信. 1)第一次握手和第二次握手(ACK部分)建立了从客户端到服务器传送数据的可靠连接: ...
随机推荐
- c#静态构造函数 与 构造函数 你是否还记得?(转载)
构造函数这个概念,在我们刚开始学习编程语言的时候,就被老师一遍一遍的教着.亲,现在你还记得静态构造函数的适用场景吗?如果没有,那么我们一起来复习一下吧.静态构造函数是在构造函数方法前面添加了stati ...
- Luogu4652 CEOI2017 One-Way Streets 树上差分
传送门 题意:给出$N$个点.$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$.问每条边是否都有唯一定 ...
- [Python]Hamming distance 问题
In [75]: x=4 In [76]: y=1 In [77]: str(bin(x ^ y))[2:].count('1') Out[77]: 2 In [78]: 来自:https://lee ...
- 使用Hexo+Github搭建属于自己的博客(进阶)
主题的配置:这里以NexT主题作为题材 1.安装NexT,在其文件夹中鼠标右键,点击Git Base Here.输入命令:git clone https://github.com/iissnan/he ...
- [C#]SQLite执行效率优化结论
一.如要使用SQLite,可以从Visual Studio中的“程序包管理器控制台”输入以下命令完成安装: PM> Install-Package System.Data.SQLite.Core ...
- KVM虚拟机管理——资源调整
1. 概述2. 计算资源调整2.1 调整处理器配置2.2 调整内存配置3. 存储资源调整3.1 根分区扩展3.2 添加磁盘4. 网络资源调整 1. 概述 KVM在使用过程中,会涉及到计算(CPU,内存 ...
- 破解Zip加密文件常用的几种方法
前言 在互联网的浪潮中,大家也许碰到过这种情况: 从网络上下载了一个zip文件,最后却发现它是用密码保护的,或者自己用密码加密了一个很重要zip文件,但是一段时间后忘记了密码,无法打开.这个时候,我们 ...
- C. Ehab and a 2-operation task
链接 [https://codeforces.com/contest/1088/problem/C] 题意 n个数,最多n+1操作,要么前i个数加x,要么前i个数对x取余,最后使得严格递增 分析 直接 ...
- MyEclipse项目里面出现红叉的解决方案?
一般出现在从别处import的项目上,只有项目文件夹上有红叉,其他地方都正常,现总结个人的几个解决方案: 有几种可能: 1,编码设置是否一致,也即是你项目原来的编码和现在eclipse用的默认编码 ...
- np.array与np.ndarray区别
(Numpy中ndarray和array的区别是什么?我在哪儿能够找到numpy中相应的实现?) 答:Well, np.array is just a convenience function to ...