poj 2785(折半枚举+二分搜索)
题意:
给定 n 行数,每行都有 4 个数A,B,C,D。
要从每列中各抽取出一个数,问使四个数的和为0的所有方案数。
相同数字不同位置当作不同数字对待。
题解:
如果采用暴力的话,从4个数列中选择数组合,共有(N^4)种选择,故时间复杂度为O(N^4),指定会超时。
但,如果将它们分成 AB,CD两组,每组只有 N^2 个组合,而 N 的数据范围为 N < 4000,故采用此种方法不会超时。
AC代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=+; int n;
int a[maxn*maxn];
int b[maxn*maxn];
int num[maxn][]; ll Solve()
{
int index=;
for(int i=;i <= n;++i)
for(int j=;j <= n;++j)
{
a[index]=num[i][]+num[j][];//存储所有的A+B的值
b[index]=num[i][]+num[j][];//存储所有的C+D的值
index++;
}
sort(a+,a+index);
sort(b+,b+index);
ll res=;
/**
A+B+C+D=0 -> C+D=-(A+B)
而C+D的所有值已经预处理好,故可通过二分查找存在于b[]中 -(A+B) 的个数即可
**/
for(int i=;i < index;++i)
{
int t=lower_bound(b+,b+index,-a[i])-b;
int k=;
while(t < index && b[t] == -a[i])//查找 -(A+B) 的个数
k++,t++;
res += k;
}
return res;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i <= n;++i)
for(int j=;j <= ;++j)
scanf("%d",&num[i][j]);
printf("%lld\n",Solve());
}
return ;
}
poj 2785(折半枚举+二分搜索)的更多相关文章
- 4 Values whose Sum is 0 POJ 2785 (折半枚举)
题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...
- POJ 3977 折半枚举
链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...
- Subset POJ - 3977(折半枚举+二分查找)
题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...
- poj 3977 Subset(折半枚举+二进制枚举+二分)
Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5721 Accepted: 1083 Descripti ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
- 【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound
[什么是upper_bound 和 lower_bound] 简单来说lower_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一 ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- poj1840 Eqs(hash+折半枚举)
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- 折半枚举(双向搜索)poj27854 Values whose Sum is 0
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 23757 Accep ...
随机推荐
- Java的首次学习和了解
先来说说自己对于Java的了解.Java是一种面向对象的语言,而c++则是面向过程的.Java在网页的开发设计制作过程中必不可少,另外我们还可以用它来做手机的移动开发,还有一些基于服务器的架构设计.J ...
- Week 2 代码审查
我的伙伴是6班的小伙子潘礼鹏,经过几天的相处我觉得真的是说话很有趣的人,性格非常好,我们很划得来. 以下为我对他的代码的审查结果: VS2012与VS2013的兼容性 在这里写一个工具集的问题,不同的 ...
- T-shirt 0 0....
老师给我这件T-shirt的目的是为了让我减肥吗...... 听说了pbb的事迹好感动 //偷偷吐槽一句,那个全套吉米多维奇可以报销吗...我就看了2行........ 吓得我赶紧看了一下浴盆的气球
- 异常 try – finally 注意的地方
finally 异常机制中还有一个重要的部分,就是finally, catch后面可以跟finally语句,语法如下所示: try{ //可能抛出异常 }catch(Exception e){ / ...
- 开源通用爬虫框架YayCrawler-框架的运行机制
这一节我将向大家介绍一下YayCrawler的运行机制,首先允许我上一张图: 首先各个组件的启动顺序建议是Master.Worker.Admin,其实不按这个顺序也没关系,我们为了讲解方便假定是这个启 ...
- Smarty 变量修饰器
为了更方便的实现 功能与显示分离,通常会用 smarty 将功能代码中的数据 assign 到页面中,在页面中合理使用 smarty 的修饰方法,会使页面显示更美观! 一个数据可同时使用多个修饰函数, ...
- React child
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- parent()、parents()和parentsUntil()的区别
1.parent() 返回被选元素的直接父元素,该方法只会向上一级对 DOM 树进行遍历: 2.parents() 返回被选元素的所有祖先元素,它一路向上直到文档的根元素 (<html>) ...
- TCPDF打印从入门到精通
1. TCPDF的模块导入 TCPDF的官网为https://tcpdf.org 官方文档有几十个例子:详情参看官方文档! 2. 使用 TCPDF打印 例如:横版表格打印并自动分页 /** * 打印 ...
- js日期
常用函數: 創建一個日期對象 var ss =new Date(): 獲取一周的天數: ss.getDay(); 獲取1970年1月1日到現在的毫秒數: getTime(): 設置具體的日期: set ...