传送门:Problem 2785

题意:

  给定 n 行数,每行都有 4 个数A,B,C,D。

  要从每列中各抽取出一个数,问使四个数的和为0的所有方案数。

  相同数字不同位置当作不同数字对待。

题解:

  如果采用暴力的话,从4个数列中选择数组合,共有(N^4)种选择,故时间复杂度为O(N^4),指定会超时。

  但,如果将它们分成 AB,CD两组,每组只有 N^2 个组合,而 N 的数据范围为 N < 4000,故采用此种方法不会超时。

AC代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=+; int n;
int a[maxn*maxn];
int b[maxn*maxn];
int num[maxn][]; ll Solve()
{
int index=;
for(int i=;i <= n;++i)
for(int j=;j <= n;++j)
{
a[index]=num[i][]+num[j][];//存储所有的A+B的值
b[index]=num[i][]+num[j][];//存储所有的C+D的值
index++;
}
sort(a+,a+index);
sort(b+,b+index);
ll res=;
/**
A+B+C+D=0 -> C+D=-(A+B)
而C+D的所有值已经预处理好,故可通过二分查找存在于b[]中 -(A+B) 的个数即可
**/
for(int i=;i < index;++i)
{
int t=lower_bound(b+,b+index,-a[i])-b;
int k=;
while(t < index && b[t] == -a[i])//查找 -(A+B) 的个数
k++,t++;
res += k;
}
return res;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i <= n;++i)
for(int j=;j <= ;++j)
scanf("%d",&num[i][j]);
printf("%lld\n",Solve());
}
return ;
}

poj 2785(折半枚举+二分搜索)的更多相关文章

  1. 4 Values whose Sum is 0 POJ 2785 (折半枚举)

    题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...

  2. POJ 3977 折半枚举

    链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...

  3. Subset POJ - 3977(折半枚举+二分查找)

    题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...

  4. poj 3977 Subset(折半枚举+二进制枚举+二分)

    Subset Time Limit: 30000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 1083 Descripti ...

  5. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

  6. 【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound

    [什么是upper_bound 和 lower_bound] 简单来说lower_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一 ...

  7. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

  8. poj1840 Eqs(hash+折半枚举)

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  9. 折半枚举(双向搜索)poj27854 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 23757   Accep ...

随机推荐

  1. C-数据结构-typedef的用法

    .typedef的用法 # include <stdio.h> typedef int zhang; //为数据类为int从新取名为zhang 等价于int typedef struct ...

  2. Git科普来一发:【rebase】与【merge】

    rebase 假设你现在基于远程分支"origin",创建一个叫"mywork"的分支. $ git checkout -b mywork origin 现在我 ...

  3. 《Linux内核设计与实现》 第十八章学习笔记

    调  试 一.准备开始 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 知道这个bug最早出现在哪个内核版本中. 1.想要成功进行调试: 让这些错误重现 抽象出问题 从代码中搜索 二. ...

  4. package.json中的几种依赖注册对象解析

    本博文根据官网+google翻译+自己的理解,欢迎指出翻译的不到位的地方. package.json的重要性不言而喻,一直以来对几种依赖注册对象的区别和作用不是很了解,今日一探究竟. dependen ...

  5. 第三个Sprint ------第三天

    出题界面代码 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...

  6. Neo4j学习案例【转】

    转自 打怪的蚂蚁 CSDN: https://blog.csdn.net/xgjianstart/article/details/77285334 neo4j有社区版本和企业版.社区版本是免费的,只支 ...

  7. shell脚本--cut命令与awk简单使用

    cut:对内容进行列切割 -d 后面的是分割符,表示用什么符号来分割符来分割列,分隔符使用引号括起来: -f后面跟着要选择的字段列,从1开始,表示第一列,如果要多列,可以用逗号分隔 : -c参数后面跟 ...

  8. C++Primer中for(auto it=s.cbegin(); iter!=s.cend() && !it->empty(); ++it){ cout<<*it<<endl; }有错误

    在C++ Primer 中文版 第五版的 98页 ,有这么一段代码 for(auto it=text.cbegin(); it!=text.cend() && !it->empt ...

  9. PAT L3-003 社交集群

    https://pintia.cn/problem-sets/994805046380707840/problems/994805053141925888 当你在社交网络平台注册时,一般总是被要求填写 ...

  10. Jenkins and Python

    https://jenkins.io/solutions/python/ In the Python ecosystem there are tools which can be integrated ...