poj 2785(折半枚举+二分搜索)
题意:
给定 n 行数,每行都有 4 个数A,B,C,D。
要从每列中各抽取出一个数,问使四个数的和为0的所有方案数。
相同数字不同位置当作不同数字对待。
题解:
如果采用暴力的话,从4个数列中选择数组合,共有(N^4)种选择,故时间复杂度为O(N^4),指定会超时。
但,如果将它们分成 AB,CD两组,每组只有 N^2 个组合,而 N 的数据范围为 N < 4000,故采用此种方法不会超时。
AC代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=+; int n;
int a[maxn*maxn];
int b[maxn*maxn];
int num[maxn][]; ll Solve()
{
int index=;
for(int i=;i <= n;++i)
for(int j=;j <= n;++j)
{
a[index]=num[i][]+num[j][];//存储所有的A+B的值
b[index]=num[i][]+num[j][];//存储所有的C+D的值
index++;
}
sort(a+,a+index);
sort(b+,b+index);
ll res=;
/**
A+B+C+D=0 -> C+D=-(A+B)
而C+D的所有值已经预处理好,故可通过二分查找存在于b[]中 -(A+B) 的个数即可
**/
for(int i=;i < index;++i)
{
int t=lower_bound(b+,b+index,-a[i])-b;
int k=;
while(t < index && b[t] == -a[i])//查找 -(A+B) 的个数
k++,t++;
res += k;
}
return res;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i <= n;++i)
for(int j=;j <= ;++j)
scanf("%d",&num[i][j]);
printf("%lld\n",Solve());
}
return ;
}
poj 2785(折半枚举+二分搜索)的更多相关文章
- 4 Values whose Sum is 0 POJ 2785 (折半枚举)
题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...
- POJ 3977 折半枚举
链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...
- Subset POJ - 3977(折半枚举+二分查找)
题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...
- poj 3977 Subset(折半枚举+二进制枚举+二分)
Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5721 Accepted: 1083 Descripti ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
- 【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound
[什么是upper_bound 和 lower_bound] 简单来说lower_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一 ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- poj1840 Eqs(hash+折半枚举)
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- 折半枚举(双向搜索)poj27854 Values whose Sum is 0
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 23757 Accep ...
随机推荐
- python基础学习笔记(五)
字符串基本操作 所有标准的序列操作(索引.分片.乘法.判断成员资格.求长度.取最小值和最大值)对字符串同样适用,前面已经讲述的这些操作.但是,请注意字符串都是不可变的. 字符串的方法: 字符串从str ...
- 对wordcount单词字母部分的修改
原始代码: int s; s = ch; switch (s) { case 'a':letter[0]++; break; case 'b':letter[1]++; break; case 'c' ...
- SRS用例
团队项目:超市管理系统 作者:王琨 个人博客地址:http://www.cnblogs.com/wangkun123 一. 用例视图概述 一般的超市商品管理系统,主要由五大模块组成,即商品信 ...
- 思甜雅---关于qq的NABCD的模型分析
个人连接:http://www.cnblogs.com/xiaoliulang/ 关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是 ...
- format()函数用法
基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数,位置可以不按顺序. 直接打印输出参数: 通过字典设置参数: 通过列表索引设置参数:
- [转]java实现,输入数据,空格继续,回车结束输入
普通版:可输入,可输出.带详细的注释 import java.util.Scanner; public class SumDemo { public static void main(String[] ...
- Online Resource Mapping for SDN Network Hypervisors using Machine Learning
发表时间:2016 一些定义: self-configuring networks: FlowVisor: FlowVisor是建立在OpenFlow之上的网络虚拟化工具,它可以将物理网络划分成多个逻 ...
- Docker安装指定版本
今天新增一个Docker服务器,Docker安装顺利,启动hello-world测试的时候却出现了问题: $ docker run hello-worldUnable to find image 'h ...
- Laravel Eloquent ORM 时如何查询表中指定的字段
导读:在使用Laravel ORM的Model方法find, get, first方法获取数据对象时返回的数据对象的attributes属性数组里会包含数据表中所有的字段对应...原文地址:http: ...
- Node http和express和mysql
const http = require("http");const express = require("express");const mysql = re ...