BZOJ4167 : 永远的竹笋采摘
首先枚举出所有可能成为区间最小差值的点对$(j,i)$。
枚举每个位置作为右端点$i$,假设$a[j]>a[i]$。
找到第一个这样的$j$,那么可以将下一个$a[j]$的范围缩小到$(a[i],\frac{a[i]+a[j]}{2})$。这是因为在这之外的数要么没有$j$优,要么会被$j$考虑到。
利用可持久化线段树可以很容易地找到下一个$j$的位置,最多$O(n\log n)$个点对,时间复杂度$O(n\log^2n)$。
接下来的问题等价于选择$k$条不相交线段,使得价值和最小。
将线段按左端点从小到大排序,设$f[i][j]$表示考虑前$i$条线段,选择了$j$条线段的最优价值,可以通过双指针优化到$O(kn\log n)$。
注意到$f[all][j]$是个凸函数,故可以二分斜率$mid$来切它,具体体现为每选一条线段,价值就多加$mid$。
那么随着$mid$的增大,最优解中选择的线段数目会越来越少。
二分找到最优解中线段数目最接近$k$的$mid$即可。
时间复杂度$O(n\log^2n)$。
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=50010,M=N*18;
int n,m,K,i,a[N],tot,T[N],l[M],r[M],v[M],tmp,ans,s[N],g[M*2];double L,R,MID,f[M*2];
struct E{int l,r,v;E(){}E(int _l,int _r,int _v){l=_l,r=_r,v=_v;}}e[M*2];
inline bool cmp(const E&a,const E&b){return a.l<b.l;}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
int ins(int x,int a,int b,int c,int p){
int y=++tot;
v[y]=p;
if(a==b)return y;
int mid=(a+b)>>1;
if(c<=mid)l[y]=ins(l[x],a,mid,c,p),r[y]=r[x];
else l[y]=l[x],r[y]=ins(r[x],mid+1,b,c,p);
return y;
}
void ask(int x,int a,int b,int c,int d){
if(!x)return;
if(c<=a&&b<=d){
if(v[x]>tmp)tmp=v[x];
return;
}
int mid=(a+b)>>1;
if(c<=mid)ask(l[x],a,mid,c,d);
if(d>mid)ask(r[x],mid+1,b,c,d);
}
inline void findbigger(int x){
int l=a[x]+1,r=n,t=x-1;
while(l<=r&&t){
tmp=0;
ask(T[t],1,n,l,r);
if(!tmp)return;
t=tmp;
e[++m]=E(t,x,a[t]-a[x]);
r=(a[x]+a[t--]-1)>>1;
}
}
inline void findsmaller(int x){
int l=1,r=a[x]-1,t=x-1;
while(l<=r&&t){
tmp=0;
ask(T[t],1,n,l,r);
if(!tmp)return;
t=tmp;
e[++m]=E(t,x,a[x]-a[t]);
l=(a[x]+a[t--]+2)>>1;
}
}
inline void up(int&x,int y){if(f[x]>f[y])x=y;}
inline void cal(){
int i,j;
for(i=1;i<=n;i++)s[i]=0;
for(i=1,j=ans=0;i<=m;i++){
while(j+1<e[i].l){
j++;
up(s[j],s[j-1]);
}
f[i]=f[s[j]]+e[i].v+MID;
g[i]=g[s[j]]+1;
up(s[e[i].r],i);
up(ans,i);
}
}
int main(){
read(n),read(K);
for(i=1;i<=n;i++)read(a[i]),T[i]=ins(T[i-1],1,n,a[i],i);
for(i=1;i<=n;i++)findbigger(i),findsmaller(i);
sort(e+1,e+m+1,cmp);
L=-1e9,R=1e9;
for(int _=80;_;_--){
MID=(L+R)/2;
cal();
if(g[ans]==K)break;
if(g[ans]<K)R=MID;else L=MID;
}
return printf("%.0f",f[ans]-MID*K),0;
}
BZOJ4167 : 永远的竹笋采摘的更多相关文章
- 【BZOJ4167】永远的竹笋采摘 分块+树状数组
[BZOJ4167]永远的竹笋采摘 题解:我们考虑有多少点对(a,b)满足a与b的差值是[a,b]中最小的.以为是随机数据,这样的点对数目可能很少,实测是O(n)级别的,那么我们已知了有这么多可能对答 ...
- BZOJ 4167: 永远的竹笋采摘
首先同BZOJ5052 \(O(n \log n \log v)\) 求出所有点对 现在变成选出 \(k\) 条不相交的线段使得权值最小 可用前缀min优化dp \(O(nk)\) 解决 还是太慢,考 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 一段良好的程序永远不应该发生panic异常
panic来自被调函数的信号,表示发生了某个已知的bug.一段良好的程序永远不应该发生panic异常 对于大部分程序而言,永远无法保证能够成功运行,因为错误原因往往超出程序员的控制范围.任何进行io操 ...
- GPIB:永远不会被淘汰 (转载)
发布时间:2014-07-02 来源:www.china-igbt.com 1994年5月出版的<测试与测量世界>中刊登了我冒险撰写的一篇名为<GPIB,时刻保持警惕>的 ...
- DIV+CSS:页脚永远保持在页面底部
页脚永远保持在页面底部 有时候,我们用CSS创建一个高度自适应布局,如何保证页脚(footer)在内容不超过一屏的情况下始终保持在布局最下方是一个比较头疼的事.我看过一些利用绝对定位的例子,但总感觉不 ...
- 假如现在有一堆长度大于3小于9的电话号码,用座机呼叫,如果出现这样的号码【123和12345】那么12345将永远不会被拨出,因为拨到123的时候电话已经呼出了,试写一个函数输出所有不能被呼出的电话号码(java实现)
解题: 假如现在有一堆长度大于3小于9的电话号码,用座机呼叫,如果出现这样的号码[123和12345]那么12345将永远不会被拨出,因为拨到123的时候电话已经呼出了,试写一个函数输出所有不能被呼出 ...
- Ubuntu为何永远绝对的免费?
Ubuntu(发行版)是一个Linux大家族,而且个个都称得上是软件精品.所谓“绝对”就是没有任何条件.不受任何限制的意思.那么,Ubuntu怎么可能是永远绝对的免费?难道这不是蛊惑人心的宣传.不能兑 ...
- 永远不要修改arguments对象
案例复现 var obj = { plus: function(arg0, arg1) { return arg0 + arg1; } }; function callMethod(context, ...
随机推荐
- 005-2-Python文件操作
Python文件操作(file) 文件操作的步骤: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件(操作文件后记住关闭) 1.读写文件的基础语法: open() 将会返回一个 ...
- Aws云服务EMR使用
Aws云服务EMR使用 创建表结构 创建abc库下的abc_user_i表字段s3://abc-server/abc-emr/shell/ABC_USER_HIVE.q: EXTERNAL 指定为外部 ...
- 盘点那些Vs中常用到的Tab快捷编码
1.快速声明for循环:for+Tab 2.快速声明Foreach遍历:foreach+Tab 3.快速定义属性:prop+Tab 4.
- Sqlserver2014 Master....提示异常,IIS未安装
Q:使用Windos认证,登录失败,问题待解决补充 Q:打开Sqlserver2014 Master....提示异常,IIS未安装 解决方案: 安装iis配置,并全部勾选asp.net特性等 Tip ...
- js 2017 - 2
设置360为极速模式 <meta name='renderer' content='webkit'> css3超出隐藏 .ellipsis { // 超出一行 width: 100%; ...
- es6 let和const
一.let 1.let块作用域 if(true){ var a=1; let b=2; } console.log("a:"+a);//a:1 console.log(" ...
- Python_面向对象_类1
面向对象:减少重复代码,提高效率,比函数式编程更高效 类的创建: 实例属性又称:成员变量,成员属性(或者字段) 面向对象的三大特性: 一.封装 把客观事物封装为抽象的类,并对外只暴露一个可用接口 使用 ...
- Flink--本地执行和集群执行
本地执行 1:local环境 LocalEnvironment是Flink程序本地执行的句柄.用它在本地JVM中运行程序 - 独立运行或嵌入其他程序中. 本地环境通过该方法实例化ExecutionEn ...
- net core体系-web应用程序-4asp.net core2.0 项目实战(1)-9项目各种全局帮助类
本文目录 1. 前沿2.CacheHelper基于Microsoft.Extensions.Caching.Memory封装3.XmlHelper快速操作xml文档4.SerializationHe ...
- 获取本地的ip,地址,code
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...