Pandas 基础(8) - 用 concat 组合 dataframe
以各个城市的天气为例, 先准备下面的数据:
印度天气的相关信息:
import pandas as pd
india_weather = pd.DataFrame({
'city': ['mumbai', 'delhi', 'banglore'],
'temperature': [32, 34, 30],
'humidity': [80, 60, 72]
})
india_weather
美国天气的相关信息:
us_weather = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
'humidity': [68, 65, 70]
})
us_weather
用 concat 组合上面两个 dataframe:
df = pd.concat([india_weather, us_weather])
df
输出:
上面的输出最左边的序列号是重复的, 原因是数据分别来自两个 dataframe 的索引值, 可以通过忽略原本的索引来做改变:
df = pd.concat([india_weather, us_weather], ignore_index=True)
输出:
下面再介绍另一种输出形式:
df = pd.concat([india_weather, us_weather], keys=['india', 'us'])
输出:
由于我们上面设置了关键字, 所以下面就可以利用这个关键字获取相关的信息:
df.loc['india']
输出:
从我们一系列的输出可以看出, 这些组合都是纵向的组合, 那么在实际应用中, 我们是经常需要做横向组合的, 比如下面的例子:
temperature_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
})
windspeed_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [7, 12, 9],
})
横向组合:
df = pd.concat([temperature_df, windspeed_df], axis=1)
输出:
从目前的输出来看, 两组数据对应的很好, 同一个城市都在同一行上, 那如果我们把数据源改下:
windspeed_df = pd.DataFrame({
'city': ['chicago', 'newyork'],
'temperature': [12, 7],
})
我改动了关于风速的数据, 颠倒了城市的顺序, 还删掉了一个城市, 大家可以自己运行一下, 看到输出的结果有点乱了. 遇到这种情况, 我们可以通过给原数据加索引的方式, 来设置数据的排序:
temperature_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
}, index=[0, 1, 2])
windspeed_df = pd.DataFrame({
'city': ['chicago', 'newyork'],
'temperature': [12, 7],
}, index=[1, 0])
输出:
这样数据顺序就调好了.
下面再介绍一下 dataframe 与 series 的组合方式:
s = pd.Series(['Humidity', 'Dry', 'Rain'], name='event')
df = pd.concat([temperature_df, s], axis=1)
输出:
以上就是关于 concat 的组合数据的一些常用方法啦, 下节课会带来更劲爆的组合方法, enjoy~~~
Pandas 基础(8) - 用 concat 组合 dataframe的更多相关文章
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- numpy&pandas基础
numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...
- Pandas基础学习与Spark Python初探
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...
- python pandas 基础理解
其实每一篇博客我都要用很多琐碎的时间片段来学完写完,每次一点点,用到了就学一点,学一点就记录一点,要用上好几天甚至一两个礼拜才感觉某一小类的知识结构学的差不多了. Pandas 是基于 NumPy 的 ...
- Pandas 基础(1) - 初识及安装 yupyter
Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
- python学习笔记(四):pandas基础
pandas 基础 serise import pandas as pd from pandas import Series, DataFrame obj = Series([4, -7, 5, 3] ...
随机推荐
- 剑指offer——python【第40题】数组中只出现一次的数字
题目描述 一个整型数组里除了两个数字之外,其他的数字都出现了偶数次.请写程序找出这两个只出现一次的数字. 思路 和那道字符串里面第一次出现唯一字符的题目类似,使用count计数方法:另外百度了一下发现 ...
- Oracle考试题作业
新建一张学员信息表(student),要求:1. 字段如下:学号(sid),姓名(name),性别(sex),年龄(age),地址(address).2. 分别为字段添加约束:学号为主键,姓名为非空, ...
- web 容器
jboss简单使用(AS7): 将项目打成war包,放到jboss-as-web-7.0.0.Final\standalone\deployments下 访问 alias .name+port+war ...
- 安装ipa文件
https://www.jianshu.com/p/419a35f9533a 1.通过iTunes直接拖动到左侧的侧边栏(未尝试) 2.通过Xcode点击进入Devices管理,添加ipa文件进行安装 ...
- iOS NSCache缓存类的了解
前言: 最近面试时,问到了限定并发数的视频下载,当时回答的时通过GCD_barrier 处理,回来想想也可以通过NSCache处理,所以顺便复习一下,这个知识点. 一,关于NSCache说明 说明 ...
- 上传js,js修改html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- loj2876 水壶 [JOISC 2014 Day2] kruscal重构树
正解:kruscal重构树+bfs 解题报告: 我永远喜欢loj! 感觉这题和这题挺像的,,,预处理和解题方法都是,,,所以大概整体二分能过去? 但因为做这题主要是入门一下kruscal重构树,,,所 ...
- 格式化输出&初始编码&运算符
一:格式化输出 % %d %s %为占位符 S替换的内容的类型为字符型 d替换的内容为整型 若在格式化输出的时候需要正常用到% 则表示时用两个%%表示 如: name = input( ...
- SpringMVC整合mybatis基于纯注解配置
Mybatis整合Spring配置 第一部分:配置Spring框架 配置SpringMVC的步骤 配置流程图 导入包(哪些包,基本包5个,1日志依赖包,2webmvc支持包)SpringMVC配置 & ...
- java之webservice客户端
1.新建客户端项目. 2.配置服务端的wsdl文件位置 3.添加junit的jar包. 4.编写客户端类.