scikit-learn---PCA(Principle Component Analysis)---KNN(image classifier)
摘要:PCA为非监督分类方法,常用于数据降维、为监督分类数据预处理,本例采用PCA对人脸特征提取先做降维处理,然后使用KNN算法对图片进行分类
1.PCA简介
设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。在本例中,主要用于降维处理。
PCA 官方文档
2.KNN
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
3.code
'''
proprocessing:PCA
test_train:KNN
AUUTHOR:MAC_YJ
TIME:2018.01.04
'''
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
people=fetch_lfw_people(min_faces_per_person=20,resize=0.7)
'''
image_shapes=people.images[0].shape
fig,axes=plt.subplots(2,5,figsize=(15,8),subplot_kw={'xticks':(),'yticks':()})
for target,image,ax in zip(people.target,people.images,axes.ravel()):
ax.imshow(image)
ax.set_title(people.target_names[target])
'''
mask=np.zeros(people.target.shape,dtype=np.bool)
for target in np.unique(people.target):
mask[np.where(people.target==target)[0][:50]]=1
X_people=people.data[mask]
y_people=people.target[mask]
#scale the grayscale value to be between0 and 1
#instead of 0 and 255 for better numric stability
X_people=X_people/255
#processing:Principle Component Analysis
pca=PCA(n_components=100,whiten=True,random_state=0)
X_train,X_test,y_train,y_test=train_test_split(X_people,y_people,stratify=y_people,random_state=0)
pca.fit(X_train)
X_train_PCA=pca.transform(X_train)
X_test_PCA=pca.transform(X_test)
#KNN
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train_PCA,y_train)
print('Test set accuracy:{:.2f}'.format(knn.score(X_test_PCA,y_test)))
4.accuracy
In [12]: %run C:\Users\杨景\Desktop\scikit-learn/PCA.py
Test set accuracy:0.31
scikit-learn---PCA(Principle Component Analysis)---KNN(image classifier)的更多相关文章
- 131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析
@(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA ...
- 另一种压缩图片的方法---Machine learning 之 PCA(Principle Component Analysis)
PCA最主要的用途是用来减少特征向量的数目,N个特征向量 减小到 K个特征向量.如果为了可视化,k可以使3 或者 2.这样可以加速算法的学习速度. PCA用来压缩图像同一有效. 具体方式以及原理在gi ...
- 【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现
[引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决 ...
- MachineLearning Exercise 7 : K-means Clustering and Principle Component Analysis
findClosestCentroids.m m = size(X,); :m [value index] = min(sum((repmat(X(i,:),K,)-centroids).^,)); ...
- R: 主成分分析 ~ PCA(Principal Component Analysis)
本文摘自:http://www.cnblogs.com/longzhongren/p/4300593.html 以表感谢. 综述: 主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据 ...
- 主成分分析 Principle Component Analysis
一.主要思想 利用正交变换把可能线性相关变量表示的观测数据,转换为由少数几个线性无关变量(主成分)表示的数据.(重构原始特征空间:线性降维) 要尽可能保留原始数据中的信息,两个思路:最大投影方差.最小 ...
- PCA(Principal Component Analysis)笔记
PCA是机器学习中recognition中的传统方法,今天下午遇到了,梳理记一下 提出背景: 二维空间里,2个相近的样本,有更大概率具有相同的属性,但是在高维空间里,由于样本在高维空间里,呈现越来越稀 ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
随机推荐
- MFC学习之EDIT控件初始化
//四种方法为EDIT控件初始化 //调用系统API HWND hEidt = ::GetDlgItem(m_hWnd,IDC_EDIT1); ::SetWindowText( ...
- vim的最最基本配置
全部用户生效 /etc/vimrc 当前用户生效 ~/.vimr # 1.设置语法高亮syntax on # 2.显示行号 set nu # 3.设置换行自动缩进为4个空格 # 4.设置tab缩进为空 ...
- AC日记——数颜色 bzoj 2120
2120 思路: 带修改的莫队: 对于离线排序询问的算法,如何修改呢? 每个询问添加一个修改标记: 表示当前询问在第几个修改之后: 然后把修改标记作为第三关键字来排序: 每次更新端点,先更新时间: 块 ...
- AC日记——可能的路径 51nod 1247
可能的路径 思路: 看到题目想到gcd: 仔细一看是更相减损: 而gcd是更相减损的优化版: 所以,对于每组数据判断gcd是否相等就好: 来,上代码: #include <cstdio> ...
- codeforces-540C
题目连接:http://codeforces.com/problemset/problem/540/C C. Ice Cave time limit per test 2 seconds memory ...
- 贪心+数学【p3156】 [CQOI2011]分金币 ([HAOI2008]糖果传递)
题目描述 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. 分析: 设: 每个人最 ...
- JavaScript 函数调用的 this词法
函数调用时的this实际上是在函数被调用时发生绑定,它指向什么完全取决于函数在哪里被调用. 特例:当函数作为构造函数被调用时,即使用new 来构造一个新对象,会自动执行以下操作: [1]创建一个新对象 ...
- div与table区别
1:速度和加载方式方面的区别 div 和 table 的差异不是速度,而是加载方式,速度只能是指网络速度,如果速度足够快,是没有差异的: div 的加载方式是即读即加载,遇到 <div> ...
- jsp登陆
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
- SQL Server 2005 系统数据介绍:dm_exec_connections
原文:SQL Server 2005 系统数据介绍:dm_exec_connections 转载:http://msdn.microsoft.com/zh-cn/library/ms181509(SQ ...