思路:

假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd(b - a, a + k)(根据gcd(a, b) = gcd(b - a, a)),所以枚举b - a的所有因子即可。

实现:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll cal(ll x, ll y, ll i, ll & minn, ll & ans)
{
if (i > x)
{
if (y + i - x < minn)
{
minn = y + i - x;
ans = i - x;
}
}
else
{
ll k = ;
if (x % i) k = (x / i + ) * i - x;
ll t = (x + k) * (y + k) / __gcd(y - x, x + k);
if (t < minn)
{
minn = t;
ans = k;
}
}
}
int main()
{
ll a, b;
while (cin >> a >> b)
{
ll x = min(a, b), y = max(a, b);
if (y % x == ) { cout << << endl; continue; }
ll minn = INF, ans = ;
for (int i = ; i * i <= y - x; i++)
{
if ((y - x) % i == )
{
cal(x, y, i, minn, ans);
if ((y - x) / i != i) cal(x, y, (y - x) / i, minn, ans);
}
}
cout << ans << endl;
}
return ;
}

CF1152C Neko does Maths的更多相关文章

  1. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. C. Neko does Maths

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  3. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  4. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  5. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  6. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  7. CF 552 Neko does Maths

    给出两个数a,b 求k     使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...

  8. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  9. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

随机推荐

  1. shell批量创建用户随机密码

    批量创建用户随机密码企业面试题3:批量创建10个系统帐号usr01-usr10并设置密码(密码为随机8位字符串). #! /bin/bash . /etc/init.d/functions Path= ...

  2. SSM集成shiro 致使Controller无法自动注册service

    由于shiro在web.xml中配置属于过滤器,其中在web.xml中的加载顺序为: <context-param>(上下文) > listener > filter > ...

  3. 1.QObject类

    简述 QObject类是所有Qt对象的基类. QObject是Qt对象模型的核心. 该模型的核心特征是称为信号和槽的对象通信机制. 您可以使用connect()将信号连接到槽,并用disconnect ...

  4. 6.7 root和user之间的切换

  5. Object.prototype.toString.call(arg)详解

    经常能碰到Object.prototype.toString.call对参数类型进行判断,一开始只知道怎么使用,却不了解具体实现的原理,最近恶补了一下相关知识,写个笔记加强理解,有什么不对的请指教. ...

  6. cc和gcc

    cc就是一个链接文件连接到gcc中.只不过cc是unix中常用的编辑工具,而在linux中用的gcc.有一些在unix中写好的程序要放在linux中,所以要指定命令cc为gcc,其实一样.用where ...

  7. C#结构体指针的定义及使用详解(intptr的用法)

    在解析C#结构体指针前,必须知道C#结构体是如何定义的.在c#中同样定义该结构体. C#结构体指针之C#结构体的定义: [StructLayout(LayoutKind.Sequential)] pu ...

  8. Lotus Notes 学习笔记

    这是一个学习关于如何使用Lotus Notes的Agent功能来实现自动化办公的学习笔记. 一. 介绍 Lotus Notes/Domino 是一个世界领先的企业级通讯.协同工作及Internet/I ...

  9. Maven中常用插件的配置

    在Maven项目的pom.xml文件中配置插件信息,使用<build></build>标签 1.配置JDK版本插件和Tomcat版本插件 <build> <! ...

  10. 洛谷P1967 货车运输

    题目描述 \(A\)国有\(n\)座城市,编号从\(1\)到\(n\),城市之间有\(m\)条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有\(q\)辆货车在运输货物, 司机们想知道每辆车在 ...