CF1152C Neko does Maths
思路:
假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd(b - a, a + k)(根据gcd(a, b) = gcd(b - a, a)),所以枚举b - a的所有因子即可。
实现:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll cal(ll x, ll y, ll i, ll & minn, ll & ans)
{
if (i > x)
{
if (y + i - x < minn)
{
minn = y + i - x;
ans = i - x;
}
}
else
{
ll k = ;
if (x % i) k = (x / i + ) * i - x;
ll t = (x + k) * (y + k) / __gcd(y - x, x + k);
if (t < minn)
{
minn = t;
ans = k;
}
}
}
int main()
{
ll a, b;
while (cin >> a >> b)
{
ll x = min(a, b), y = max(a, b);
if (y % x == ) { cout << << endl; continue; }
ll minn = INF, ans = ;
for (int i = ; i * i <= y - x; i++)
{
if ((y - x) % i == )
{
cal(x, y, i, minn, ans);
if ((y - x) / i != i) cal(x, y, (y - x) / i, minn, ans);
}
}
cout << ans << endl;
}
return ;
}
CF1152C Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- C. Neko does Maths
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
随机推荐
- shell批量创建用户随机密码
批量创建用户随机密码企业面试题3:批量创建10个系统帐号usr01-usr10并设置密码(密码为随机8位字符串). #! /bin/bash . /etc/init.d/functions Path= ...
- SSM集成shiro 致使Controller无法自动注册service
由于shiro在web.xml中配置属于过滤器,其中在web.xml中的加载顺序为: <context-param>(上下文) > listener > filter > ...
- 1.QObject类
简述 QObject类是所有Qt对象的基类. QObject是Qt对象模型的核心. 该模型的核心特征是称为信号和槽的对象通信机制. 您可以使用connect()将信号连接到槽,并用disconnect ...
- 6.7 root和user之间的切换
- Object.prototype.toString.call(arg)详解
经常能碰到Object.prototype.toString.call对参数类型进行判断,一开始只知道怎么使用,却不了解具体实现的原理,最近恶补了一下相关知识,写个笔记加强理解,有什么不对的请指教. ...
- cc和gcc
cc就是一个链接文件连接到gcc中.只不过cc是unix中常用的编辑工具,而在linux中用的gcc.有一些在unix中写好的程序要放在linux中,所以要指定命令cc为gcc,其实一样.用where ...
- C#结构体指针的定义及使用详解(intptr的用法)
在解析C#结构体指针前,必须知道C#结构体是如何定义的.在c#中同样定义该结构体. C#结构体指针之C#结构体的定义: [StructLayout(LayoutKind.Sequential)] pu ...
- Lotus Notes 学习笔记
这是一个学习关于如何使用Lotus Notes的Agent功能来实现自动化办公的学习笔记. 一. 介绍 Lotus Notes/Domino 是一个世界领先的企业级通讯.协同工作及Internet/I ...
- Maven中常用插件的配置
在Maven项目的pom.xml文件中配置插件信息,使用<build></build>标签 1.配置JDK版本插件和Tomcat版本插件 <build> <! ...
- 洛谷P1967 货车运输
题目描述 \(A\)国有\(n\)座城市,编号从\(1\)到\(n\),城市之间有\(m\)条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有\(q\)辆货车在运输货物, 司机们想知道每辆车在 ...