bzoj 3158 千钧一发 —— 最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158
\( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2;
因为如果把两个奇数的 \( a[i] \) 写成 \( 2*n+1 \) 和 \( 2*m+1 \),那么:
\( a[i]^{2} + a[j]^{2} = (2*n+1)^{2} + (2*m+1)^{2} = 4*(n^{2}+n+m^{2}+m) + 2 \)
这是个偶数,所以如果它是完全平方数,那么一定是一个偶数的平方,那么那个 \( +2 \) 就没有办法了,所以它一定不是一个完全平方数;
于是可以把点分成两部分;
然后用最小割的思路,不能一起选就连边,两部分内部的点显然是不互相连边的;
然后原点、汇点分别和两个部分有 \( b[i] \) 的边,跑最小割即可。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
int const xn=,xm=,inf=1e9;
int n,hd[xn],ct=,nxt[xm],to[xm],c[xm],dis[xn],cur[xn],S,T,a[xn],b[xn];
queue<int>q;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void ade(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; c[ct]=z;}
void add(int x,int y,int z){ade(x,y,z); ade(y,x,);}
bool ck(int a,int b)
{
ll x=(ll)a*a+(ll)b*b;
ll t=(ll)sqrt(x);
return t*t==x;
}
int gcd(int a,int b){return b?gcd(b,a%b):a;};
bool bfs()
{
for(int i=S;i<=T;i++)dis[i]=;
dis[S]=; q.push(S);
while(q.size())
{
int x=q.front(); q.pop();
for(int i=hd[x],u;i;i=nxt[i])
if(!dis[u=to[i]]&&c[i])dis[u]=dis[x]+,q.push(u);
}
return dis[T];
}
int dfs(int x,int fl)
{
if(x==T)return fl;
int ret=;
for(int &i=cur[x],u;i;i=nxt[i])
{
if(dis[u=to[i]]!=dis[x]+||!c[i])continue;
int tmp=dfs(u,min(fl-ret,c[i]));
if(!tmp)dis[u]=;
c[i]-=tmp; c[i^]+=tmp;
ret+=tmp; if(ret==fl)break;
}
return ret;
}
int main()
{
n=rd(); S=; T=n+; int ans=;
for(int i=;i<=n;i++)a[i]=rd();
for(int i=;i<=n;i++)b[i]=rd(),ans+=b[i];
for(int i=;i<=n;i++)
if(a[i]&)add(S,i,b[i]);
else add(i,T,b[i]);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(ck(a[i],a[j])&&gcd(a[i],a[j])==)
{
if(a[i]&)add(i,j,inf);
else add(j,i,inf);
}
while(bfs())
{
memcpy(cur,hd,sizeof hd);
ans-=dfs(S,inf);
}
printf("%d\n",ans);
return ;
}
bzoj 3158 千钧一发 —— 最小割的更多相关文章
- BZOJ 3158 千钧一发 最小割
分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...
- bzoj 3158 千钧一发(最小割)
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 767 Solved: 290[Submit][Status][Discuss] ...
- bzoj 3158: 千钧一发【最小割】
这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
- BZOJ 3158: 千钧一发
3158: 千钧一发 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1201 Solved: 446[Submit][Status][Discuss ...
- bzoj 3158 千钧一发——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 发现偶数之间一定满足第二个条件:奇数之间一定满足第一个条件 ( \( (2m+1)^{ ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- BZOJ 3158 千钧一发 (最大流->二分图带权最大独立集)
题面:BZOJ传送门 和方格取数问题很像啊 但这道题不能像网格那样黑白染色构造二分图,所以考虑拆点建出二分图 我们容易找出数之间的互斥关系,在不能同时选的两个点之间连一条流量为$inf$的边 由于我们 ...
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
- javascript中apply和call的区别
请补充 136页 pdf 高级javascript设计
- Meeting-in-the-Middle (LA 2965)
Meeting-in-the-Middle,又称“中途相遇法”.准确地说,它只是一种策略. 顺便说一下,这个算法真的很冷门! 结合这道题来讨论一下吧:LA 2965.ε(┬┬﹏┬┬)3 因为博主的英文 ...
- C#基础知识之三
C#基础知识之三 1. 程序集间的继承:基类必须被声明为public.必须在project中包含对该基类的程序集引用. 2. 对其它程序集引用和添加对using指令的差别:前者是告诉编译器所需的类 ...
- 6.让ORM映射执行的时候打印SQL语句
配置Django日志:\hello_django\hello_django\settings.py 文件中的 LOGGING 加入如下配置: LOGGING = { 'version': 1, 'di ...
- 13.Django模版
没什么好说的,看官方文档 https://docs.djangoproject.com/en/1.9/ref/templates/builtins/
- Springmvc注解启用
http://www.blogbus.com/wanping-logs/235898637.html 使用注解的原因 最方便的还是启用注解 注解方便,而且项目中很流行. 配置文件尽量减少,主要使用 ...
- python3 str和bytes转换
bytes object b = b"example" str object s = "example" #str to bytes bytes(s, enco ...
- HDU - 1598 find the most comfortable road 【最小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1598 思路 用kruskal 算法 将边排序后 跑 kruskal 然后依次将最小边删除 再去跑 kr ...
- [原创]关于设置linux中vim 显示行号
1.更改所有账户配置 直接更改/etc/vimrc vim /etc/vimrc 在vimrc文件的最后添加 set nu 即可 wq退出. 这样,不论使用哪个账号登陆,vim打开后都显示行号 2.为 ...
- Python 3 软件开发规范
Python 3 软件开发规范 参考链接 http://www.cnblogs.com/linhaifeng/articles/6379069.html#_label14 对每个目录,文件介绍. #= ...