AVL就是优化二叉查找树

平衡因子不大于1

左 < 根 < 右

具体看代码

#include<bits/stdc++.h>

using namespace std;
typedef struct node;
typedef node * tree;
struct node
{
int v;
int heigh;
tree L,R;
}; //获取以root为根结点的子树的当前height
int getheigh(tree root)
{
if(root==NULL) return ;
return root->heigh;
} //更新结点root的heigh
void updataheigh(tree root)
{
//max(左孩子结点的height,有孩子结点的height)+1
root->heigh=max(getheigh(root->L),getheigh(root->R))+;
} //计算平衡因子
int getBalance(tree root)
{
//左-右
return getheigh(root->L)-getheigh(root->R);
} //左旋 注意原理 对于RR是root的右孩子的平衡因子是-1
void L(tree &root)
{
tree temp;
temp=root->R;
root->R=temp->L;
temp->L=root;
updataheigh(root);
updataheigh(temp);
root=temp;
} void R(tree &root)
{
tree temp;
temp=root->L;
root->L=temp->R;
temp->R=root;
updataheigh(root);
updataheigh(temp);
root=temp;
}
void insertt(tree &root,int v)
{
if(root==NULL){//当结点是空的时候 就是插入的时候
root=new node;
root->v=v;
root->heigh=;
root->L=root->R=NULL;
return;
}
if(v<root->v){
insertt(root->L,v);
updataheigh(root);//注意更新树高
if(getBalance(root)==){
if(getBalance(root->L)==){
R(root);
}
else if(getBalance(root->L)==-){
L(root->L);
R(root);
}
}
}
else{
insertt(root->R,v);
updataheigh(root);
if(getBalance(root)==-){
if(getBalance(root->R)==-){
L(root);
}
else if(getBalance(root->R)==){
R(root->R);
L(root);
}
}
} }
int main()
{
int n;
scanf("%d",&n);
int x;
tree root;
root=NULL;
for(int i=;i<n;i++){
scanf("%d",&x);
insertt(root,x);
}
printf("%d\n",root->v);
return ;
}

平衡二叉树(AVL)的更多相关文章

  1. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  2. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  3. 平衡二叉树AVL - 插入节点后旋转方法分析

    平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根 ...

  4. 二叉查找树、平衡二叉树(AVL)、B+树、联合索引

    1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访 ...

  5. Java 树结构实际应用 四(平衡二叉树/AVL树)

    平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: ...

  6. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  7. 平衡二叉树AVL删除

    平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...

  8. 平衡二叉树AVL插入

    平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为 ...

  9. 数据结构快速回顾——平衡二叉树 AVL (转)

    平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵 ...

  10. 平衡二叉树AVL

    1.定义 平衡二叉树(Balanced Binary Tree)是二叉查找树的一个改进,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发 ...

随机推荐

  1. http知识补充

    在我的职业生涯中,没怎么重视过这http四个字,想当然的觉得不就是个网页请求嘛就没怎么当回事,而且很多http相关的长篇大论一听就困,真心是弄不下去,但是就是这种观念导致我后期的工作中不断的挖坑,不断 ...

  2. Oracle数据库几种启动方式及查询当前状态

    Oracle数据库几种启动方式 1.startup nomount: 非安装启动,这种方式下启动可执行:重建控制文件.重建数据库,读取init.ora文件,启动instance,即启动SGA和后台进程 ...

  3. BZOJ 3235: [Ahoi2013]好方的蛇

    BZOJ 3235: [Ahoi2013]好方的蛇 标签(空格分隔): OI-BZOJ OI-DP OI-容斥原理 Time Limit: 10 Sec Memory Limit: 64 MB Des ...

  4. 2017.9.21 HTML学习总结---多媒体播放系统设计

    1.题目:整个页面被划分三个子窗口,上面窗口为页面功能提示区, 下左部分为不同类型播放的功能选项,下右部分为播放系统显示播放信息窗口. (1)网页设计框架: <html> <head ...

  5. chrome 浏览器插件开发(二)—— 通信 获取页面变量 编写chrome插件专用的库

    在chrome插件的开发过程中,我遇到了一些问题,在网上找了不少文章,可能是浏览器升级的原因,有一些是有效的也有无效的.下面我简单的分享一下我遇到的坑,以及我把这些坑的解决方案整理而成的js库 —— ...

  6. multi-view datasets

    http://rll.berkeley.edu/2014_ICRA_dataset/ http://rgbd-dataset.cs.washington.edu/dataset/

  7. django中csrftoken跨站请求伪造的几种方式

    1.介绍 我们之前从前端给后端发送数据的时候,一直都是把setting中中间件里的的csrftoken这条给注释掉,其实这个主要起了一个对保护作用,以免恶意性数据的攻击.但是这样直接注释掉并不是理智型 ...

  8. CodeForces_864_bus

    C. Bus time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  9. Linux实战教学笔记15:用户管理初级(下)

    第十四节 用户管理初级(下) 标签(空格分隔): Linux实战教学笔记-陈思齐 ---更多资料点我查看 1,用户查询相关命令id,finger,users,w,who,last,lastlog,gr ...

  10. 使用myeclipse创建servlet后输入地址无法访问

    问题: 使用myeclipse创建servlet后输入地址无法访问 1.首先,路径的访问地址是在web.xml里设置的,一般会自动生成(但是可能会和你自己输入的有出入) 你必须按照<url-pa ...