HDU 3957 Street Fighter (最小支配集 DLX 重复覆盖+精确覆盖 )
DLX经典题型,被虐惨了……
建一个2*N行3*N列的矩阵,行代表选择,列代表约束。前2*N列代表每个人的哪种状态,后N列保证每个人至多选一次。
显然对手可以被战胜多次(重复覆盖),每个角色至多选择一次(精确覆盖)。
注意事项:
1.行数=∑每个人的模式数,之前我直接把行数当2*N了……但实际上也会有人只有一种模式的,也就是说实际行数小于等于2*N
2.建图的时候注意:这个人不光能覆盖他所战胜的某角色的某模式,还覆盖了他自己的所有模式(因为他不用战胜自己)。之前没注意这个问题,样例全成无解了orz……
3.处理精确覆盖和重复覆盖的先后顺序。如果优先处理精确覆盖,会把重复覆盖的一些行也删掉,这样前面可以重复覆盖的很多列也被当成了精确覆盖,显然不对了。所以应当先处理重复覆盖。恢复的时候遵循先删除的后恢复,后删除的先恢复。
4.只要满足重复覆盖的条件即为一个可行解。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> using namespace std; const int MAXN = ;
const int INF = << ; int N;
int U[ (*MAXN)*(*MAXN) ], D[ (*MAXN)*(*MAXN) ];
int L[ (*MAXN)*(*MAXN) ], R[ (*MAXN)*(*MAXN) ];
int C[ (*MAXN)*(*MAXN) ];
int cnt[ *MAXN ];
bool mx[ *MAXN ][ *MAXN ];
bool vis[ *MAXN ];
bool vs[MAXN][][MAXN][]; //i的x模式能打败j的y模式
int modelN[MAXN]; //i有几个模式
int sum[MAXN];
int head;
int maxr, maxc; void Remove( int c ) //重复覆盖删除列
{
for ( int i = D[c]; i != c; i = D[i] )
{
R[ L[i] ] = R[i];
L[ R[i] ] = L[i];
}
return;
} void Resume( int c ) //重复覆盖恢复列
{
for ( int i = D[c]; i != c; i = D[i] )
{
R[ L[i] ] = i;
L[ R[i] ] = i;
}
return;
} void ExRemove( int c ) //精确覆盖删除列+行
{
int i, j;
L[ R[c] ] = L[c];
R[ L[c] ] = R[c];
for ( i = D[c]; i != c; i = D[i] )
{
for ( j = R[i]; j != i; j = R[j] )
{
U[ D[j] ] = U[j];
D[ U[j] ] = D[j];
--cnt[ C[j] ];
}
}
return;
} void ExResume( int c ) //精确覆盖恢复列+行
{
int i, j;
R[ L[c] ] = c;
L[ R[c] ] = c;
for ( i = D[c]; i != c; i = D[i] )
{
for ( j = R[i]; j != i; j = R[j] )
{
U[ D[j] ] = j;
D[ U[j] ] = j;
++cnt[ C[j] ];
}
}
return;
} bool build()
{
head = ;
for ( int i = ; i < maxc; ++i )
{
R[i] = i + ;
L[i + ] = i;
}
R[maxc] = ;
L[] = maxc; //列链表
for ( int j = ; j <= maxc; ++j )
{
int pre = j;
cnt[j] = ;
for ( int i = ; i <= maxr; ++i )
{
if ( mx[i][j] )
{
++cnt[j];
int cur = i * maxc + j;
U[cur] = pre;
D[pre] = cur;
C[cur] = j;
pre = cur;
}
}
U[j] = pre;
D[pre] = j;
//if ( !cnt[j] ) return false;
} //行链表
for ( int i = ; i <= maxr; ++i )
{
int pre = -, first = -;
for ( int j = ; j <= maxc; ++j )
{
if ( mx[i][j] )
{
int cur = i * maxc + j;
if ( pre == - ) first = cur;
else
{
L[cur] = pre;
R[pre] = cur;
}
pre = cur;
}
}
if ( first != - )
{
R[pre] = first;
L[first] = pre;
}
} return true;
} /****************以上DLX模板****************/ //估价函数:至少还要选几个人
int h()
{
memset( vis, false, sizeof(vis) );
int res = ;
for ( int c = R[head]; c <= maxr && c != head; c = R[c] )
{
if ( !vis[c] )
{
++res;
vis[c] = true;
for ( int i = D[c]; i != c; i = D[i] )
for ( int j = R[i]; j != i; j = R[j] )
vis[ C[j] ] = true;
}
}
return res;
} bool DFS( int dep, int limit )
{
//A-star剪枝
if ( dep + h() > limit ) return false; //只要前面满足重复覆盖的条件,即为可行解
if ( R[head] > maxr || R[head] == head ) return true; int c, minv = INF;
for ( int i = R[head]; i <= maxr && i != head; i = R[i] )
{
if ( cnt[i] < minv )
{
minv = cnt[i];
c = i;
}
} for ( int i = D[c]; i != c; i = D[i] )
{
Remove(i);
//注意处理重复覆盖和精确覆盖的顺序
for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] <= maxr ) Remove(j); for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] > maxr ) ExRemove( C[j] ); if ( DFS( dep + , limit ) )
{
//注意恢复精确覆盖和重复覆盖的顺序,这样恢复之后可以不必重新建图
for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] > maxr ) ExResume( C[j] ); for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] <= maxr ) Resume(j); Resume(i); //之前忘了恢复i,死活TLE
return true;
} for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] > maxr ) ExResume( C[j] );
for ( int j = R[i]; j != i; j = R[j] )
if ( C[j] <= maxr ) Resume(j);
Resume(i);
} return false;
} int solved()
{
int l = , r = N;
int ans; while ( l <= r )
{
int mid = ( l + r ) >> ;
if ( DFS( , mid ) )
{
r = mid - ;
ans = mid;
}
else l = mid + ;
} return ans;
} void show()
{
for ( int i = ; i <= maxr; ++i )
{
for ( int j = ; j <= maxc; ++j )
printf( "%d", mx[i][j] );
puts("");
}
} void init()
{
memset( mx, false, sizeof(mx) ); for( int i = ; i < N; ++i )
{
for ( int x = ; x < modelN[i]; ++x )
{
mx[ sum[i] + x ][ maxr + i + ] = true;
mx[ sum[i] + x ][ sum[i] ] = true;
if ( modelN[i] > )
{
mx[ sum[i] + x ][ sum[i] + ] = true;
}
for ( int j = ; j < N; ++j )
{
for ( int y = ; y < modelN[j]; ++y )
{
if ( vs[i][x][j][y] )
{
mx[ sum[i] + x ][ sum[j] + y ] = true;
}
}
}
}
} //show();
return;
} int main()
{
//freopen( "in.txt", "r", stdin );
//freopen( "out.txt", "w", stdout );
int T, cas = ;
scanf( "%d", &T );
while ( T-- )
{
memset( vs, false, sizeof(vs) );
scanf( "%d", &N );
maxr = ; for ( int i = ; i < N; ++i )
{
scanf( "%d", &modelN[i] );
sum[i] = maxr + ;
for ( int j = ; j < modelN[i]; ++j )
{
++maxr;
int K;
scanf( "%d", &K );
for ( int k = ; k < K; ++k )
{
int id, mode;
scanf( "%d%d", &id, &mode );
vs[i][j][id][mode] = true;
}
}
} maxc = maxr + N;
init();
build();
printf("Case %d: %d\n", ++cas, solved() );
}
return ;
}
HDU 3957 Street Fighter (最小支配集 DLX 重复覆盖+精确覆盖 )的更多相关文章
- HDU 3957 Street Fighter(搜索、DLX、重复覆盖+精确覆盖)
很久以前就看到的一个经典题,一直没做,今天拿来练手.街霸 给n<=25个角色,每个角色有 1 or 2 个版本(可以理解为普通版以及爆发版),每个角色版本可以KO掉若干人. 问最少选多少个角色( ...
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- 求解任意图的最小支配集(Minimun Dominating Set)
给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合.G的最小控制顶点集合为V的一个子集S∈V:假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V:则最小控制顶点集合 ...
- POJ 3659 Cell Phone Network(树的最小支配集)(贪心)
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6781 Accepted: 242 ...
- 树形DP求树的最小支配集,最小点覆盖,最大独立集
一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...
- 树形DP 树的最小支配集,最小点覆盖与最大独立集
最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...
随机推荐
- ios各层
数据持久层.业务逻辑层.表示层 数据持久层: 持久化(Persistence)意思就是当你退出app的时候它还会存在. dao层:DAO (Data Access Object) 数据访问对象是一个面 ...
- Ray-AABB交叉检测算法
最近在解决三维问题时,需要判断线段是否与立方体交叉,这个问题可以引申为:射线是否穿过立方体AABB. 在3D游戏开发中碰撞检测普遍采用的算法是轴对齐矩形边界框(Axially Aligned ...
- MySQL中的if和case语句使用总结
create table test( id int primary key auto_increment, name ), sex int ) ),(),(),() ,'男','女') from te ...
- html css javascript 知识点总结 bom js 操作标签 文本 节点 表格各行变色 悬停变色 省市联动 正则
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- Onboard,迷人的引导页样式制作库
简介 Onboard主要用于引导页制作,源码写的相当规范,值得参考. 项目主页: https://github.com/mamaral/Onboard 实例下载: https://github.com ...
- iOS程序猿如何快速掌握 PHP,化身"全栈攻城狮"?
这是一篇以 iOS 开发人员的视角写给广大iOS 程序猿的 PHP 入门指南.在这篇文章里我努力去发掘 objectiv-c 与 php 之间的共性,来帮助有一定 iOS 开发经验的攻城狮来快速上手一 ...
- git 常用命令及仓库创建
一.常用命令 1.添加到本地仓库缓存 git add . 2.查看本地仓库状态 git status 3.提交到本地仓库 git commit -am 'project init' 4.连接线上分支 ...
- 基于mybatis设计简单信息管理系统2
1.空指针异常 public class CanvasServlet extends HttpServlet { private CanvasService canvasService; privat ...
- VMware运行时“内部错误”的解决方法
解决方法:打开虚拟机实体目录,如下:发现有两个虚拟机配置文件,一个文件大小为4KB,另一个为空.现在虚拟机默认使用为空的配置文件了. 将大小为空的虚拟机配置文件删除掉,然后将另一个配置文件重名命. 接 ...
- PCA 实例演示二维数据降成1维
import numpy as np # 将二维数据降成1维 num = [(2.5, 2.4), (0.5, 0.7), (2.2, 2.9), (1.9, 2.2), (3.1, 3.0), (2 ...