题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2178

sol  :是谁.......是谁往题里下毒......

   辛普森积分,每次判断左边+右边是否-lastans是否<eps,递归处理

   公式:f'(l~r)=(r-l)*(f(l)+f(r)+4*f(mid))/6

   f(i)表示x=i时与圆相交部分的和,然后直接上辛普森积分就可以水过了

   P.S.此题有坑QAQ

     eps设成1e-13才能过,1e-12会WA

     需要剪枝:将包含在其他圆内的圆删去

   P.S.此题有毒.....不知道为什么排序时写cmp就TLE了,然而重载运算符就AC了也是很迷啊QAQ

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define eps 1e-13
using namespace std;
const int Mx=;
int n,tot,st,to;
bool vis[Mx];
double L[Mx],R[Mx];
struct Node { double x,y,r; } str[Mx];
struct Line { double l,r; } line[Mx];
double dis(Node a,Node b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); }
bool cmp1(Node a,Node b) { return a.r<b.r; }
bool cmp2(Node a,Node b) { return a.x-a.r<b.x-b.r; }
bool operator < (Line a,Line b) { return a.l<b.l; }
double cal(double fl,double fmid,double fr,double r_l) { return r_l*(fl+fr+*fmid)/; }
double get_f(double x)
{
double ans=; tot=;
for(int i=;i<=n;i++)
if(x>=L[i]&&x<=R[i])
{
double len=sqrt(str[i].r*str[i].r-(str[i].x-x)*(str[i].x-x));
line[++tot].l=str[i].y-len; line[tot].r=str[i].y+len;
}
sort(line+,line+tot+);
for(int i=,j;i<=tot;i++)
{
double minl=line[i].l,minr=line[i].r;
for(j=i+;j<=tot;j++)
{
if(line[j].l>minr) break;
if(line[j].r>minr) minr=line[j].r;
}
ans+=minr-minl; i=j-;
}
return ans;
}
double simpson(double l,double r,double mid,double fl,double fr,double fmid,double lastans)
{
double mid1=(l+mid)/,mid2=(mid+r)/,fmid1=get_f(mid1),fmid2=get_f(mid2);
double ans1=cal(fl,fmid1,fmid,mid-l),ans2=cal(fmid,fmid2,fr,r-mid);
if(fabs(ans1+ans2-lastans)<eps) return ans1+ans2;
return simpson(l,mid,mid1,fl,fmid,fmid1,ans1)+simpson(mid,r,mid2,fmid,fr,fmid2,ans2);
}
void solve()
{
double ans=0.00;
for(int i=,j;i<=n;i++)
{
st=i; double minl=L[i],minr=R[i],minmid;
for(j=i+;j<=n;j++)
{
if(L[j]>minr) break;
if(R[j]>minr) minr=R[j];
}
to=j-,i=to,minmid=(minl+minr)/;
double fl=get_f(minl),fr=get_f(minr),fmid=get_f(minmid),lstans=cal(fl,fmid,fr,minr-minl);
ans+=simpson(minl,minr,minmid,fl,fr,fmid,lstans);
}
printf("%.3lf",ans);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf%lf%lf",&str[i].x,&str[i].y,&str[i].r);
sort(str+,str++n,cmp1);
//剪枝
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(fabs(str[j].r-str[i].r)>=dis(str[j],str[i]))
{
vis[i]=; break;
}
for(int i=,tmp=,mx=n;i<=mx;i++) if(!vis[i]) str[++tmp]=str[i],n=tmp;
//
sort(str+,str++n,cmp2);
for(int i=;i<=n;i++) L[i]=str[i].x-str[i].r,R[i]=str[i].x+str[i].r;
solve();
return ;
}

bzoj2178:圆的面积并的更多相关文章

  1. [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并

    [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...

  2. BZOJ2178: 圆的面积并(格林公式)

    题面 传送门 题解 好神仙-- 先给几个定义 平面单连通区域:设\(D\)是平面内一区域,若属于\(D\)内任一简单闭曲线的内部都属于\(D\),则称\(D\)为单连通区域.通俗地说,单连通区域是没有 ...

  3. BZOJ2178 圆的面积并 计算几何 辛普森积分

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2178.html 题目传送门 - BZOJ2178 题意 给出 $n(n\leq 1000)$ 个圆,求 ...

  4. bzoj2178: 圆的面积并

    Description 给出N个圆,求其面积并 Input 先给一个数字N ,N< = 1000 接下来是N行是圆的圆心,半径,其绝对值均为小于1000的整数 Output 面积并,保留三位小数 ...

  5. BZOJ2178 圆的面积并(simpson积分)

    板子题.可以转一下坐标防止被卡.精度和常数实在难以平衡. #include<iostream> #include<cstdio> #include<cmath> # ...

  6. 【BZOJ2178】圆的面积并(辛普森积分)

    [BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...

  7. 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]

    [题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...

  8. JAVA求圆的面积

    import java.text.DecimalFormat;import java.util.Scanner; public class TheAreaOfCircle { public stati ...

  9. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  10. 【BZOJ】2178: 圆的面积并

    http://www.lydsy.com/JudgeOnline/problem.php?id=2178 题意:给出n<=1000个圆,求这些圆的面积并 #include <cstdio& ...

随机推荐

  1. pycharm界面美化,个人喜欢

    进入file-setting选项 界面设置主要是在appearance和editor里面.appearance主要是整个pycharm的主题设置,比如文件管理窗口的颜色,其实就是软件本身的主题设置.我 ...

  2. PHP自动生成分页链接

    page.class.php <?php class Page { // 分页栏每页显示的页数 public $rollPage = 5; // 页数跳转时要带的参数 public $param ...

  3. linux下载利器之curl和wget的区别

    linux下载利器-------curl和wget的区别 curl和wget基础功能有诸多重叠,如下载等. 在高级用途上的curl由于可自定义各种请求参数所以长于模拟web请求,用于测试网页交互(浏览 ...

  4. JZOJ 5913. 林下风气

    Description 里口福因有林下风气,带领全国各地高校掀起了一股AK风,大家都十分痴迷于AK.里口福为了打击大家的自信心,出了一道自以为十分困难的题目.里口福有一棵树,第i个节点上有点权ai,他 ...

  5. Numpy 索引及切片

    1.一维数组的索引及切片 ar = np.arange(20) print(ar) print(ar[4]) print(ar[3:6]) print(ar[:4:2]) #索引到4 按2的步长 pr ...

  6. HTML介绍和head标签-01

    主要内容 web标准 浏览器介绍 开发工具介绍 HTML介绍 HTML颜色介绍 HTML规范 HTML结构详解 一.web标准 web准备介绍: w3c:万维网联盟组织,用来制定web标准的机构(组织 ...

  7. Python数据类型一

    一.整型 在Python内部对整数的处理分为普通整数和长整数,普通整数长度为机器位长,通常都是32位,超过这个范围的整数就自动当长整数处理,而长整数的范围几乎完全没限制Python可以处理任意大小的整 ...

  8. DJango跨域中间键

    Skip to main content   Search PyPISearch Help Donate Log in Register django-cors-middleware 1.3.1 pi ...

  9. MySQL数据库基础总结

    来源: 实验楼 链接: https://www.shiyanlou.com/courses/9 一.开发准备 # 打开 MySQL 服务 sudo service mysql start #使用 ro ...

  10. wget 下载页面下所有文件

    先介绍几个参数:-c 断点续传(备注:使用断点续传要求服务器支持断点续传),-r 递归下载(目录下的所有文件,包括子目录),-np 递归下载不搜索上层目录,-k 把绝对链接转为相对链接,这样下载之后的 ...