luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演
ms是莫比乌斯反演里最水的题。。。
题意:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
多组询问, T<=50000,d,a,b<=50000
稍微推下shizi
\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\)
\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}[\gcd(i,j)=1]\)
\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\sum_{d|i,d|j}\mu(d)\)
\(=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\sum_{d|i,d|j}\mu(d)\)
\(=\sum_{d=1}^n\mu(d)\lfloor\frac a{kd}\rfloor\lfloor\frac b{kd}\rfloor\)
连枚举倍数都不用。。。直接打个数论分块就行了。。。复杂度\(O(T\sqrt n)\)
#include <cstdio>
#include <functional>
using namespace std;
bool visit[50010];
int prime[50010], mu[50010], tot, fuck = 50000;
int main()
{
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (visit[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
visit[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
mu[i] += mu[i - 1];
}
int t;
scanf("%d", &t);
while (t --> 0)
{
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
n /= k, m /= k;
int res = 0;
if (n > m) swap(n, m);
for (int i = 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
res += (mu[j] - mu[i - 1]) * (n / i) * (m / i);
}
printf("%d\n", res);
}
return 0;
}
40行一遍AC
于NOIWC2019 Day2晚试机
日推里出现的题,竟然挺水
NOI Linux真TM难用,累死我了
luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演的更多相关文章
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- bzoj 2440 简单莫比乌斯反演
题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- 【XSY2523】神社闭店之日 莫比乌斯反演
题目大意 给你\(a_1\ldots a_n,l,c\)每次给你\(x,y\),求有多少个序列满足:长度\(\leq l\),每个元素是\([1,c]\),循环右移\(a_j(x\leq j\leq ...
- 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
[Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
随机推荐
- 玩school 学习sql server 查询的网站
http://www.w3school.com.cn/sql/sql_like.asp
- 【新手向】Centos系统文件权限的系统阐述与演示
在linux服务器日常管理中,我们会经常管理查看文件或者文件夹的权限内容以保证服务的正常运行.今天就和大家聊聊文件权限的那些事. 查看文件的权限情况可以用 ll 命令例: ll -d /kid #查看 ...
- Tiny4412 Android 启动流程
Android系统的启动主要包括三个阶段: ①BootLoader启动 ②Linux Kernel启动 ③Android系统启动 前面我们大致分析了前面两个步骤,即u-boot和内核的启动流程(内核启 ...
- 安卓读取SD卡的容量
在开发中,我们经常会用到SD卡,那么在对SD卡进行读写的时候,我们经常需要判断SD卡的剩余容量是否足够.因此,这次我们来写写获取SD卡容量的程序. 该注意的地方,我都在程序里面有注明了.看程序基本就懂 ...
- Maven学习入门——2016-2-17
一.Maven的基本概念 1.1Mawen是干啥的??? 我们第一次接触Maven一般就是用Maven为我们的项目加入jar包,非常的方便. maven到底是干什么的??说白了,maven就是用来管理 ...
- <c:set var="ctx" value="${pageContext.request.contextPath}" />的学习
${pageContext.request.contextPath},是获取当前根目录 set var="ctx",是给这个路径定义了一个变量,用的时候可以通过EL表达式获取:${ ...
- 获取当前设备的CPU个数
public class Test { public static void main(String[] args) { //获取当前设备的CPU个数 int availableProcessors ...
- nginx关闭php报错页面显示
默认情况下nginx是会显示php的报错的,如果要关闭报错显示,需要在/usr/local/php7/etc/php-fpm.d/www.conf文件里面设置,貌似默认情况下在php.ini关闭没效果 ...
- CF702E Analysis of Pathes in Functional Graph
倍增练习题. 基环树上倍增一下维护维护最小值和权值和,注意循环的时候$j$这维作为状态要放在外层循环,平时在树上做的时候一个一个结点处理并不会错,因为之前访问的结点已经全部处理过了. 时间复杂度$O( ...
- Luogu 3402 可持久化并查集
点开这题纯属无聊……不过既然写掉了,那就丢一个模板好了 不得不说,可持久化并查集实现真的很暴力,就是把并查集的数组弄一个主席树可持久化. 有一点要注意的是不能写路径压缩,这样跳版本的时候会错,所以弄一 ...