题目链接:点击打开链接

Check the difficulty of problems

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8583   Accepted: 3656

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:

1. All of the teams solve at least one problem.

2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

题目大意:给出几个队,几道题,第一名至少A的题数N,求每队都至少有一道A并且冠军队伍达到N题的概率

思路:只知道是概率dp(神犇说是简单的dp)主要还是怎么规划好状态。(初始化和状态转移方程)

AC代码:

#include<iostream>
#include<cstdio>
using namespace std; int M, T, N;
double dp[1010][50][50];//dp[i][j][k] 第i队前j题过k道的概率
double s[1010][50];//s[i][k] 第i队过小于等于k的概率
double p[1010][50]; int main() {
while(~scanf("%d %d %d", &M, &T, &N)) {
if(M+T+N == 0)
break;
for(int i = 1; i <= T; i++)
for(int j = 1; j <= M; j++)
scanf("%lf", &p[i][j]);
for(int i = 1; i <= T; i++) {
dp[i][0][0] = 1;//前0题过0道概率为1
for(int j = 1; j <= M; j++) {
dp[i][j][0] = dp[i][j-1][0] * (1-p[i][j]);//前j题过0道 = 前j-1题概率 * 本题不过概率
}
for(int j = 1; j <= M; j++) { //前j题过k道 = 前j-1题过k-1道的概率 * 本题过的概率 + 前j-1题过k道 * 本题不过概率
for(int k = 1; k <= j; k++) { //写成了k <= M
dp[i][j][k] = dp[i][j-1][k-1] * p[i][j] + dp[i][j-1][k] * (1-p[i][j]);
}
}
s[i][0] = dp[i][M][0];//过小于等于0道概率 就是前M题过0道概率
for(int k = 1; k <= M; k++) {
s[i][k] = s[i][k-1] + dp[i][M][k];// s[i][k] = dp[i][M][0] + dp[i][M][1] + ...+ dp[i][M][k];
}
}
double P1 = 1;
double P2 = 1;
for(int i = 1; i <= T; i++) {
P1 *= (1-s[i][0]); // 所有队都至少过一道概率
P2 *= (s[i][N-1] - s[i][0]); //所有对都过 1~N-1道 概率
}
printf("%.3lf\n", P1-P2);
}
}

POJ2151-Check the difficulty of problems的更多相关文章

  1. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

  2. [poj2151]Check the difficulty of problems概率dp

    解题关键:主要就是概率的推导以及至少的转化,至少的转化是需要有前提条件的. 转移方程:$dp[i][j][k] = dp[i][j - 1][k - 1]*p + dp[i][j - 1][k]*(1 ...

  3. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

  4. Check the difficulty of problems

    Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5830 Acc ...

  5. Check the difficulty of problems(POJ 2151)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5457   ...

  6. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  7. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  8. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  9. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  10. 【poj2151】 Check the difficulty of problems

    http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...

随机推荐

  1. 关于ATML信号定义的理解-1

    1.XML中的类型标签: <xs:complexType>复合类型和<xs:simpleTyle>简单类型是数据结构类型,包含了各种类型的属性.可以被子类型继承,继承方式为&l ...

  2. luogu2627 修剪草坪

    dp[i]表示1~i最大效率 记一下前缀和 转移就是f[i]=max(f[i],f[j-1]-sum[j])+sum[i] (i-k<=j<=i) 发现括号里的只与j有关 开一个单调队列维 ...

  3. ACM学习历程—HDU 5073 Galaxy(数学)

    Description Good news for us: to release the financial pressure, the government started selling gala ...

  4. Oracle RAC TAF 无缝failover

    理论背景: TAF( Transparent Application Failover ) allows oracle clients to reconnect to a surviving inst ...

  5. Poj 3356 ACGT(LCS 或 带备忘的递归)

    题意:把一个字符串通过增.删.改三种操作变成另外一个字符串,求最少的操作数. 分析: 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除. 分析可知两个字符串的距离肯定 ...

  6. 人物-IT-马化腾:马化腾

    ylbtech-人物-IT-马化腾:马化腾 马化腾,1971年10月29日生于原广东省海南岛东方市八所港(今海南省东方市),祖籍广东省汕头市.腾讯公司主要创办人之一.现任腾讯公司董事会主席兼首席执行官 ...

  7. art-template-loader:template

    ylbtech-art-template-loader: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:ht ...

  8. java报表开发之报表总述

    转自:https://blog.csdn.net/u011659172/article/details/40504271?utm_source=blogxgwz6

  9. js中的Number方法

    1.Number.toExponential(fractionDigits) 把number转换成一个指数形式的字符串.可选参数控制其小数点后的数字位数.它必须在0~20之间. 例如: documen ...

  10. sharepoint Foundation 2013安装过程

    安装完必备软件后,便可安装sharepoint Foundation 2013