CF 984C Finite or not? (数论)

给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数。

首先我们先把p/q约分一下。类比一下b=10的情况,我们发现约分后,只有当q的因数仅有2的倍数和5的倍数时,p/q才是有限小数。于是这启发我们猜结论:仅当q的质因数集合包含在b的质因数集合内时,p/q在b进制下才是有限小数。

那么现在问题就被转换为了:已知两数q,b,问q的质因数集合是否完全包含在b的中。

设\(b=p_1^{k_1}p_2^{k_2}...p_n^{k_n}*C\),\(q=p_1^{c_1}p_2^{c_2}...p_n^{c_n}*D\),且\(\{p_i,\ i\le n\}\)是q与b个数最多的共同质因数集合。那么我们要想办法把q中的\(p_i\)给去掉,使q只剩下D。由于\(k_i>0\),\(c_i>0\),那么设\(b'=(b, q)\),那么不停将\(b'\)除\(q\)得到\(q'\),最后剩下的数就是D。现在只需判断D是否为1即可。

#include <cstdio>
using namespace std; typedef long long LL;
LL T, p, q, b; LL gcd(LL x, LL y){ return y?gcd(y, x%y):x; } int main(){
scanf("%lld", &T); LL t;
while (T--){
scanf("%lld%lld%lld", &p, &q, &b);
t=gcd(p, q); p/=t; q/=t;
//现在问题转化为求q的质因数集合是否被包含在b的内
b=gcd(q, b); LL lq=0;
while (q!=lq){
lq=q;
q/=gcd(q, b);
}
if (q==1) puts("Finite"); else puts("Infinite");
}
return 0;
}

CF 984C Finite or not? (数论)的更多相关文章

  1. cf C. Finite or not? 数论

    You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...

  2. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  3. CodeForces - 984C——Finite or not?分数整除问题(数论,gcd)

    题目传送门 题目描述:给你一个p/q,让你求在b进制下,这个小数是不是有限小数. 思路: 先来膜拜一个大神的博客,如何求小数的二进制表达,(感谢博主肘子zhouzi).然后小数的其他进制表达也一样. ...

  4. 【cf 483 div2 -C】Finite or not?(数论)

    链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...

  5. CodeForces 984C Finite or not?

    http://codeforces.com/problemset/problem/984/C Time limit    1000 msMemory limit    262144 kB 题目 You ...

  6. CF 371B Fox Dividing Cheese[数论]

    B. Fox Dividing Cheese time limit per test 1 second memory limit per test 256 megabytes input standa ...

  7. CF984 C. Finite or not?【数论/GCD】

    [链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...

  8. 【数论】Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!] C. Finite or not?

    题意:给你一个分数,问你在b进制下能否化成有限小数. 条件:p/q假如已是既约分数,那么如果q的质因数分解集合是b的子集,就可以化成有限小数,否则不能. 参见代码:反复从q中除去b和q的公因子部分,并 ...

  9. cf 450b 矩阵快速幂(数论取模 一大坑点啊)

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

随机推荐

  1. Php处理大文件-分割和合并

    分割文件 /* * 分割文件 * 默认大小 2M=10485760/5 */ function file_split($file,$block_size=10485760/5) { $block_in ...

  2. Linux-解决putty无法直接使用root用户远程登录linux主机的问题

    问题描述: 有时,在使用putty连接远程linux主机时会发现,无法直接使用root登录, 但是可以使用其他用户登录,然后切换至root用户. 解决办法: 1.修改配置文件 vi /etc/ssh/ ...

  3. Linux Shell 判断块设备节点是否存在

    /************************************************************************* * Linux Shell 判断块设备节点是否存在 ...

  4. [原]NYOJ-开灯问题-77

    大学生程序代写 //http://acm.nyist.net/JudgeOnline/problem.php?pid=77 /*题目77题目信息运行结果本题排行讨论区开灯问题 时间限制:3000 ms ...

  5. BZOJ5324 JXOI2018 守卫

    传送门 这是我见过的为数不多的良心九怜题之一 题目大意 给定一段$n$个点构成的折线,第$i$个折点的坐标是$(i,h_i)$,你可以在$i$点放置一个视野,定义$i$能看到$j$当且仅当$i$处有视 ...

  6. jquery.cxSelect插件,城市没单位

    jquery.cxSelect插件,新增城市没单位也能显示出来的功能. 具体,请查看修改后的插件代码:(主要是FixNoUnit函数) /*! * jQuery cxSelect * @name jq ...

  7. CF 360 E Levko and Game —— 贪心+最短路

    题目:http://codeforces.com/contest/360/problem/E 首先,每条边不是选 \( l[i] \) 就是选 \( r[i] \): 做法就是先把边权都设成 \( r ...

  8. TextBlock截断字符显示为....

    添加: TextTrimming="CharacterEllipsis" 到TextBlock中, 即可让TextBlock 支持截断字符显示为...

  9. Poj 1742 Coins(多重背包)

    一.Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dolla ...

  10. Azure自动化部署服务 (1)

    Azure中已经发布了自动化部署服务的PaaS功能. 本文将介绍自动化服务Automation初始化过程. 在Azure Management Portal上左边可以看到Azure的各种服务,其中一项 ...