CF 984C Finite or not? (数论)
CF 984C Finite or not? (数论)
给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数。
首先我们先把p/q约分一下。类比一下b=10的情况,我们发现约分后,只有当q的因数仅有2的倍数和5的倍数时,p/q才是有限小数。于是这启发我们猜结论:仅当q的质因数集合包含在b的质因数集合内时,p/q在b进制下才是有限小数。
那么现在问题就被转换为了:已知两数q,b,问q的质因数集合是否完全包含在b的中。
设\(b=p_1^{k_1}p_2^{k_2}...p_n^{k_n}*C\),\(q=p_1^{c_1}p_2^{c_2}...p_n^{c_n}*D\),且\(\{p_i,\ i\le n\}\)是q与b个数最多的共同质因数集合。那么我们要想办法把q中的\(p_i\)给去掉,使q只剩下D。由于\(k_i>0\),\(c_i>0\),那么设\(b'=(b, q)\),那么不停将\(b'\)除\(q\)得到\(q'\),最后剩下的数就是D。现在只需判断D是否为1即可。
#include <cstdio>
using namespace std;
typedef long long LL;
LL T, p, q, b;
LL gcd(LL x, LL y){ return y?gcd(y, x%y):x; }
int main(){
scanf("%lld", &T); LL t;
while (T--){
scanf("%lld%lld%lld", &p, &q, &b);
t=gcd(p, q); p/=t; q/=t;
//现在问题转化为求q的质因数集合是否被包含在b的内
b=gcd(q, b); LL lq=0;
while (q!=lq){
lq=q;
q/=gcd(q, b);
}
if (q==1) puts("Finite"); else puts("Infinite");
}
return 0;
}
CF 984C Finite or not? (数论)的更多相关文章
- cf C. Finite or not? 数论
You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...
- CF 980D Perfect Groups(数论)
CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...
- CodeForces - 984C——Finite or not?分数整除问题(数论,gcd)
题目传送门 题目描述:给你一个p/q,让你求在b进制下,这个小数是不是有限小数. 思路: 先来膜拜一个大神的博客,如何求小数的二进制表达,(感谢博主肘子zhouzi).然后小数的其他进制表达也一样. ...
- 【cf 483 div2 -C】Finite or not?(数论)
链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...
- CodeForces 984C Finite or not?
http://codeforces.com/problemset/problem/984/C Time limit 1000 msMemory limit 262144 kB 题目 You ...
- CF 371B Fox Dividing Cheese[数论]
B. Fox Dividing Cheese time limit per test 1 second memory limit per test 256 megabytes input standa ...
- CF984 C. Finite or not?【数论/GCD】
[链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...
- 【数论】Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!] C. Finite or not?
题意:给你一个分数,问你在b进制下能否化成有限小数. 条件:p/q假如已是既约分数,那么如果q的质因数分解集合是b的子集,就可以化成有限小数,否则不能. 参见代码:反复从q中除去b和q的公因子部分,并 ...
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
随机推荐
- (转)Java字符串转日期或日期转字符串
文章中,用的API是SimpleDateFormat,它是属于java.text.SimpleDateFormat,所以请记得import进 来! 用法: SimpleDateFormat sdf = ...
- Python基础-MD5加密
import hashlibm = hashlib.md5()#构造一个md5 m.update(b"Hello")#加密前必须转化成二进制字节类型print(m.hexdiges ...
- bzoj 4034: 树上操作 线段树
题目: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 微服务理论之五:微服务架构 vs. SOA架构
一.面向服务的架构SOA 面向服务的架构是一种软件体系结构,应用程序的不同组件通过网络上的通信协议向其他组件提供服务.通信可以是简单的数据传递,也可以是两个或多个服务彼此协调连接.这些独特的服务执行一 ...
- 人物-IT-马云:马云
ylbtech-人物-IT-马云:马云 马云 (阿里巴巴集团创始人) 马云,男,汉族,中共党员,1964年9月10日生于浙江省杭州市,祖籍浙江省嵊州市谷来镇, 阿里巴巴集团主要创始人,现担任阿里巴巴集 ...
- windows 创建和调用 动态库,静态库
windows创建和调用静态库 // MathFuncsLib.h namespace MathFuncs { class MyMathFuncs { public: // Returns a + b ...
- Ruby迭代器(Iterator)
简单的讲,一个迭代器就是一个能接受代码块的方法.当初为了进行迭代操作而设置了带块方法,现在很多时候仍然称它为迭带器. 可实际上,早期版本的 Ruby 将使用代码块的方法称为迭代器,因为它们就是被设计来 ...
- VisualGDB系列7:使用VS创建Linux静态库和动态库
根据VisualGDB官网(https://visualgdb.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指正. 本文介绍如何在VS中创建静态库和动态库, ...
- Python函数式编程(把函数作为参数传入)
map:接受两个参数(函数,Iterable),map将传入的函数依次作用于Iterable的每个元素,并且返回新的Iterable def f(x): return x*x r = map(f,[1 ...
- Selenium VS Webdriver
Selenium 是 ThroughtWorks 一个强大的基于浏览器的开源自动化测试工具,它通常用来编写 Web 应用的自动化测试.随着 Selenium 团队发布 Selenium 2(又名 We ...