http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有词向量空间 SVM 等介绍

http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed-english/Ch27b_ir2-vectorspace-95.pdf 专门介绍向量空间

https://courses.cs.washington.edu/courses/cse573/12sp/lectures/17-ir.pdf 也提到了其他思路 貌似类似语音识别的统计模型

使用深度学习来做文档相似度计算 https://cs224d.stanford.edu/reports/PoulosJackson.pdf 还有这里 http://www.cms.waikato.ac.nz/~ml/publications/2012/JASIST2012.pdf

网页里直接比较文本相似度的 http://www.scurtu.it/documentSimilarity.html

这里汇总了一些回答 http://stackoverflow.com/questions/8897593/similarity-between-two-text-documents  包括利用NLP NLTK库来做,或者是diff,skylearn词向量空间+cos

http://stackoverflow.com/questions/1844194/get-cosine-similarity-between-two-documents-in-lucene 也有cosine相似度计算方法

lucene 3 里的cosine相似度计算方法 https://darakpanand.wordpress.com/2013/06/01/document-comparison-by-cosine-methodology-using-lucene/#more-53 注意:4和3的计算方法不一样

向量空间模型(http://stackoverflow.com/questions/10649898/better-way-of-calculating-document-similarity-using-lucene):

Once you've got your data components properly standardized, then you can worry about what's better: fuzzy match, Levenshtein distance, or cosine similarity (etc.)

As I told you in my comment, I think you made a mistake somewhere. The vectors actually contain the <word,frequency> pairs, not words only. Therefore, when you delete the sentence, only the frequency of the corresponding words are subtracted by 1 (the words after are not shifted). Consider the following example:

Document a:

A B C A A B C. D D E A B. D A B C B A.

Document b:

A B C A A B C. D A B C B A.

Vector a:

A:6, B:5, C:3, D:3, E:1

Vector b:

A:5, B:4, C:3, D:1, E:0

Which result in the following similarity measure:

(6*5+5*4+3*3+3*1+1*0)/(Sqrt(6^2+5^2+3^2+3^2+1^2) Sqrt(5^2+4^2+3^2+1^2+0^2))=
62/(8.94427*7.14143)=
0.970648

lucene里 more like this:

you may want to check the MoreLikeThis feature of lucene.

MoreLikeThis constructs a lucene query based on terms within a document to find other similar documents in the index.

http://lucene.apache.org/java/3_0_1/api/contrib-queries/org/apache/lucene/search/similar/MoreLikeThis.html

Sample code example (java reference) -

MoreLikeThis mlt = new MoreLikeThis(reader); // Pass the index reader
mlt.setFieldNames(new String[] {"title", "author"}); // specify the fields for similiarity Query query = mlt.like(docID); // Pass the doc id
TopDocs similarDocs = searcher.search(query, 10); // Use the searcher
if (similarDocs.totalHits == 0)
// Do handling
}

http://stackoverflow.com/questions/1844194/get-cosine-similarity-between-two-documents-in-lucene 提到: 

i have built an index in Lucene. I want without specifying a query, just to get a score (cosine similarity or another distance?) between two documents in the index.

For example i am getting from previously opened IndexReader ir the documents with ids 2 and 4. Document d1 = ir.document(2); Document d2 = ir.document(4);

How can i get the cosine similarity between these two documents?

Thank you

When indexing, there's an option to store term frequency vectors.

During runtime, look up the term frequency vectors for both documents using IndexReader.getTermFreqVector(), and look up document frequency data for each term using IndexReader.docFreq(). That will give you all the components necessary to calculate the cosine similarity between the two docs.

An easier way might be to submit doc A as a query (adding all words to the query as OR terms, boosting each by term frequency) and look for doc B in the result set.

As Julia points out Sujit Pal's example is very useful but the Lucene 4 API has substantial changes. Here is a version rewritten for Lucene 4.

import java.io.IOException;
import java.util.*; import org.apache.commons.math3.linear.*;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.core.SimpleAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.*; public class CosineDocumentSimilarity { public static final String CONTENT = "Content"; private final Set<String> terms = new HashSet<>();
private final RealVector v1;
private final RealVector v2; CosineDocumentSimilarity(String s1, String s2) throws IOException {
Directory directory = createIndex(s1, s2);
IndexReader reader = DirectoryReader.open(directory);
Map<String, Integer> f1 = getTermFrequencies(reader, 0);
Map<String, Integer> f2 = getTermFrequencies(reader, 1);
reader.close();
v1 = toRealVector(f1);
v2 = toRealVector(f2);
} Directory createIndex(String s1, String s2) throws IOException {
Directory directory = new RAMDirectory();
Analyzer analyzer = new SimpleAnalyzer(Version.LUCENE_CURRENT);
IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_CURRENT,
analyzer);
IndexWriter writer = new IndexWriter(directory, iwc);
addDocument(writer, s1);
addDocument(writer, s2);
writer.close();
return directory;
} /* Indexed, tokenized, stored. */
public static final FieldType TYPE_STORED = new FieldType(); static {
TYPE_STORED.setIndexed(true);
TYPE_STORED.setTokenized(true);
TYPE_STORED.setStored(true);
TYPE_STORED.setStoreTermVectors(true);
TYPE_STORED.setStoreTermVectorPositions(true);
TYPE_STORED.freeze();
} void addDocument(IndexWriter writer, String content) throws IOException {
Document doc = new Document();
Field field = new Field(CONTENT, content, TYPE_STORED);
doc.add(field);
writer.addDocument(doc);
} double getCosineSimilarity() {
return (v1.dotProduct(v2)) / (v1.getNorm() * v2.getNorm());
} public static double getCosineSimilarity(String s1, String s2)
throws IOException {
return new CosineDocumentSimilarity(s1, s2).getCosineSimilarity();
} Map<String, Integer> getTermFrequencies(IndexReader reader, int docId)
throws IOException {
Terms vector = reader.getTermVector(docId, CONTENT);
TermsEnum termsEnum = null;
termsEnum = vector.iterator(termsEnum);
Map<String, Integer> frequencies = new HashMap<>();
BytesRef text = null;
while ((text = termsEnum.next()) != null) {
String term = text.utf8ToString();
int freq = (int) termsEnum.totalTermFreq();
frequencies.put(term, freq);
terms.add(term);
}
return frequencies;
} RealVector toRealVector(Map<String, Integer> map) {
RealVector vector = new ArrayRealVector(terms.size());
int i = 0;
for (String term : terms) {
int value = map.containsKey(term) ? map.get(term) : 0;
vector.setEntry(i++, value);
}
return (RealVector) vector.mapDivide(vector.getL1Norm());
}
}

Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离的更多相关文章

  1. 4. 文本相似度计算-CNN-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DN ...

  2. 3. 文本相似度计算-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章 ...

  3. 转:Python 文本挖掘:使用gensim进行文本相似度计算

    Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理 ...

  4. python 文本相似度计算

    参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from g ...

  5. word2vec词向量训练及中文文本类似度计算

    本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...

  6. java文章标题及文章相似度计算hash算法实现

    参看了 https://github.com/awnuxkjy/recommend-system 对方用了 余弦 函数实现相似度计算,我则用的是 hanlp+hash 算法(Hash算法总结) 再看服 ...

  7. 【NLP】Python实例:基于文本相似度对申报项目进行查重设计

    Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...

  8. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  9. 海量数据相似度计算之simhash和海明距离

    通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析.分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法.欧式距离.Jaccard相 ...

随机推荐

  1. HBase中我认为比较常用的两个类:Scan和Filter

    学习HBase一段时间后,我认为HBase中比较常用,同时也是必须掌握的两个API是Scan和Filter.如下是我的理解: 1.Scan  ---- 扫描类 作用:用来对一个指定Table进行按行扫 ...

  2. Agri-Net - poj 1258 (Prim 算法)

      Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44373   Accepted: 18127 Description F ...

  3. 在Ubuntu下利用Eclipse开发FFmpeg配置小结

    首先需要编译FFmpeg得到头文件和lib文件,参见:在Ubuntu下编译FFmpeg 选择File-New-C Project 选择Executable下的Empty Project,右侧选择Lin ...

  4. Android BroadcastReceiver介绍 (转)

    原文地址:http://www.cnblogs.com/trinea/archive/2012/11/09/2763182.html 本文主要介绍BroadcastReceiver的概念.使用.生命周 ...

  5. 图像处理之基础---傅立叶c实现

    http://blog.csdn.net/lzhq28/article/details/7847047 http://blog.csdn.net/lishizelibin/article/detail ...

  6. android中实现毛笔效果(View 中画图)

    近期有一个项目设计一个APP实现通过触摸屏实现毛笔写字效果.传统的绘画板程序直接通过Path的moveTo和LineTo便可实现简单的线条绘画程序.然而要达到毛笔的笔锋效果则须要更为具体点的设计.我的 ...

  7. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  8. zookeepeer ID生成器 (一)

    目录 写在前面 1.1. ZK 的分布式命名服务 1.1.1. 分布式 ID 生成器的类型 UUID方案 1.1.2. ZK生成分布式ID 写在最后 疯狂创客圈 亿级流量 高并发IM 实战 系列 疯狂 ...

  9. 从springmvc启动日志学习

    javaee标准中,tomcat等web容器启动时走web.xml 先将各种contex-param 放到servletcontxt中变成parameter,然后开始启动容器,容器对外提供了liste ...

  10. eclipse revert resources 很慢的解决办法

    eclipse启动无响应,停留在Loading workbench状态,或老是加载不了revert resources 做开发的同学们或多或少的都会遇到eclipse启动到一定程度时,就进入灰色无响应 ...