BZOJ2957 楼房重建 【线段树】
题目
小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?
输入格式
第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi
输出格式
M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋
输入样例
3 4
2 4
3 6
1 1000000000
1 1
输出样例
1
1
1
2
提示
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
题解
线段树还能这样玩。。学到了
首先求出每个楼到原点的斜率,题目实质就转化为了维护最长上升子序列
一个很自然的想法就是开一个线段树记录区间最大值mx和区间答案ans
如果左区间mx>右区间mx,直接返回左区间答案
如果左区间mx<=右区间mx,就有点棘手
可以对右区间递归处理,将右区间再分为两个子区间【其实就是线段树上的】
①若区间长度为1,直接判断
②若左区间mx比当前最大值小,对右区间递归处理
③若左区间mx较大,在整个区间中右区间的答案不受影响,将整个区间的答案减去左区间的答案再加上左区间递归处理的答案即可
复杂度O(nlog2n)
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define ls (u << 1)
#define rs (u << 1 | 1)
#define eps 1e-9
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,ans[4 * maxn],L[4 * maxn],R[4 * maxn];
double mx[4 * maxn];
int cal(int u,double h){
if (L[u] == R[u]) return mx[u] > h;
if (h > mx[ls]) return cal(rs,h);
return ans[u] - ans[ls] + cal(ls,h);
}
void modify(int u,int l,int r,int pos,double v){
if (l == r) {mx[u] = v;ans[u] = fabs(v) > eps;return;}
int mid = l + r >> 1;
if (mid >= pos) modify(ls,l,mid,pos,v);
else modify(rs,mid + 1,r,pos,v);
if (mx[ls] > mx[rs]) mx[u] = mx[ls],ans[u] = ans[ls];
else mx[u] = mx[rs],ans[u] = ans[ls] + cal(rs,mx[ls]);
}
void build(int u,int l,int r){
if (l == r) return;
L[u] = l; R[u] = r; int mid = l + r >> 1;
build(ls,l,mid); build(rs,mid + 1,r);
}
int main(){
n = RD(); m = RD(); int x,y;
build(1,1,n);
while (m--){
x = RD(); y = RD();
modify(1,1,n,x,(double)y / x);
printf("%d\n",ans[1]);
}
return 0;
}
BZOJ2957 楼房重建 【线段树】的更多相关文章
- bzoj2957 楼房重建——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左 ...
- [BZOJ2957] 楼房重建 (线段树,递归)
题目链接 Solution 经典的一道线段树题,难点在于如何合并节点. 由于题目要求直线要求不相交,则斜率均大于前面的点即为答案. 所以以斜率为权值. 考虑线段树每一个节点维护两个值: \(Max\) ...
- bzoj2957楼房重建——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护原点到楼顶的斜率,可以知道答案就是从原点开始斜率递增的个数: 记录一个mx数 ...
- [bzoj2957][楼房重建] (线段树)
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
- [BZOJ29957] 楼房重建 - 线段树
2957: 楼房重建 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3294 Solved: 1554[Submit][Status][Discus ...
- bzoj 2957: 楼房重建 线段树
2957: 楼房重建 Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...
- luogu P4198 楼房重建——线段树
题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...
- bzoj 2957: 楼房重建 ——线段树
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
- [Luogu P4198]楼房重建(线段树)
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...
- bzoj 2957 楼房重建 (线段树+思路)
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...
随机推荐
- leetcode笔记(二)94. Binary Tree Inorder Traversal
题目描述 (原题目链接) Given a binary tree, return the inorder traversal of its nodes' values. For example:Giv ...
- centos 7 ifconfig 命令找不到
最近在配置linux 环境: 在官网看到centOS除了最新版本7,那就尝试一下吧.最小安装centOS 7之后发现没有ifconfig命令,在网上找了一下都说是路径的路问题. 我用echo $PAT ...
- python核心编程2 第六章 练习
6-2. 字符串标识符.修改例 6-1 的 idcheck.py 脚本,使之可以检测长度为一的标识符,并且可以识别 Python 关键字,对后一个要求,你可以使用 keyword 模块(特别是 key ...
- ES6笔记01-声明变量
ES6只有六种声明变量的方法:var命令和function命令,let和const命令,import命令和class命令.所以,ES6一共有6种声明变量的方法. const声明一个只读的常量.一旦声明 ...
- 通信服务器哈希Socket查找(Delphi)
在Socket通信服务器的开发中,我们经常会需要Socket与某个结构体指针进行绑定.当连接量很大时,意味着需要个高效的查找方法 Delphi中提供了哈希算法类,以此类为基础,修改出Socket专用M ...
- python——直方图均衡化
from PIL import Image from pylab import * from numpy import * def histeq(im,nbr_bins = 256): "& ...
- 6,MongoDB 之 Array Object 的特殊操作
相比关系型数据库, Array [1,2,3,4,5] 和 Object { 'name':'DragonFire' } 是MongoDB 比较特殊的类型了 特殊在哪里呢?在他们的操作上又有什么需要注 ...
- JS 金钱格式化
JavaScript Money Format(用prototype对Number进行扩展) Number.prototype.formatMoney = function (places, symb ...
- JWT应用
调试器库简介问一件T恤! 精心制作 JSON Web令牌简介 新:免费获得JWT手册并深入学习JWT! 什么是JSON Web Token? JSON Web Token(JWT)是一个开放标准(RF ...
- web.py上传文件并解压
有个需求是从php端上传zip文件到python端并且解压到指定目录,以下是解决方法 1.python端,使用的web.py def POST(self): post_data = web.input ...