BZOJ2957 楼房重建 【线段树】
题目
小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?
输入格式
第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi
输出格式
M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋
输入样例
3 4
2 4
3 6
1 1000000000
1 1
输出样例
1
1
1
2
提示
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
题解
线段树还能这样玩。。学到了
首先求出每个楼到原点的斜率,题目实质就转化为了维护最长上升子序列
一个很自然的想法就是开一个线段树记录区间最大值mx和区间答案ans
如果左区间mx>右区间mx,直接返回左区间答案
如果左区间mx<=右区间mx,就有点棘手
可以对右区间递归处理,将右区间再分为两个子区间【其实就是线段树上的】
①若区间长度为1,直接判断
②若左区间mx比当前最大值小,对右区间递归处理
③若左区间mx较大,在整个区间中右区间的答案不受影响,将整个区间的答案减去左区间的答案再加上左区间递归处理的答案即可
复杂度O(nlog2n)
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define ls (u << 1)
#define rs (u << 1 | 1)
#define eps 1e-9
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,ans[4 * maxn],L[4 * maxn],R[4 * maxn];
double mx[4 * maxn];
int cal(int u,double h){
if (L[u] == R[u]) return mx[u] > h;
if (h > mx[ls]) return cal(rs,h);
return ans[u] - ans[ls] + cal(ls,h);
}
void modify(int u,int l,int r,int pos,double v){
if (l == r) {mx[u] = v;ans[u] = fabs(v) > eps;return;}
int mid = l + r >> 1;
if (mid >= pos) modify(ls,l,mid,pos,v);
else modify(rs,mid + 1,r,pos,v);
if (mx[ls] > mx[rs]) mx[u] = mx[ls],ans[u] = ans[ls];
else mx[u] = mx[rs],ans[u] = ans[ls] + cal(rs,mx[ls]);
}
void build(int u,int l,int r){
if (l == r) return;
L[u] = l; R[u] = r; int mid = l + r >> 1;
build(ls,l,mid); build(rs,mid + 1,r);
}
int main(){
n = RD(); m = RD(); int x,y;
build(1,1,n);
while (m--){
x = RD(); y = RD();
modify(1,1,n,x,(double)y / x);
printf("%d\n",ans[1]);
}
return 0;
}
BZOJ2957 楼房重建 【线段树】的更多相关文章
- bzoj2957 楼房重建——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左 ...
- [BZOJ2957] 楼房重建 (线段树,递归)
题目链接 Solution 经典的一道线段树题,难点在于如何合并节点. 由于题目要求直线要求不相交,则斜率均大于前面的点即为答案. 所以以斜率为权值. 考虑线段树每一个节点维护两个值: \(Max\) ...
- bzoj2957楼房重建——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护原点到楼顶的斜率,可以知道答案就是从原点开始斜率递增的个数: 记录一个mx数 ...
- [bzoj2957][楼房重建] (线段树)
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
- [BZOJ29957] 楼房重建 - 线段树
2957: 楼房重建 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3294 Solved: 1554[Submit][Status][Discus ...
- bzoj 2957: 楼房重建 线段树
2957: 楼房重建 Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...
- luogu P4198 楼房重建——线段树
题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...
- bzoj 2957: 楼房重建 ——线段树
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...
- [Luogu P4198]楼房重建(线段树)
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...
- bzoj 2957 楼房重建 (线段树+思路)
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...
随机推荐
- Python的静态方法和类方法
Python中使用@staticmethod这个装饰器让方法变为静态方法 一:定义 @staticmethod: 首先它是一个装饰器,被装饰的方法不需要隐含的参数,对象和对象的实例都可以调用静态方法 ...
- 【赛时总结】 ◇赛时·II◇ AtCoder ABC-100
◆赛时·II◆ ABC-100 ■唠叨■ ABC终于超过百场比赛啦(毫不犹豫地参加).然后莫名其妙的好像是人很多,评测慢得不可理喻.然后我就--交了一大发--错误程序--然后B题就没了.最后的D题居然 ...
- 前端之HTML和CSS
html概述及html文档基本结构 html概述 HTML是 HyperText Mark-up Language 的首字母简写,意思是超文本标记语言,超文本指的是超链接,标记指的是标签,是一种用来制 ...
- gzip,bzip2,xz压缩工具
gzip,bzip2,xz压缩工具====================== gzip压缩工具 示例:[root@aminglinux yasuo]# ls1.txt 2.txt 3.txt[roo ...
- 在程序开发中,++i 与 i++的区别
在不参与运算的情况下,i++和++i都是在变量的基础加1 ◆在参与运算的情况下 Var i=123; Var j=i++; 先将i的值123赋值给j,之后再自增 j的值为123 i 的值为124 ...
- PHP ping
<?php /// start ping.inc.php /// $g_icmp_error = "No Error"; // timeout in ms function ...
- SQL tp3.2 批量更新 saveAll
/** * 批量更新数据 * @param [array] $datas [更新数据] * @param [string] $table_name [表名] */ public function sa ...
- 数据分析处理库Pandas——数据透视表
数据 按指定的行列值显示 求和 按行求和 按列求和 数据 求平均 备注:按性别计算每个等级船票的平均价格. 备注:每个等级船舱中每种性别获救的平均值,也就是获救的比例. 备注:每种性别未成年人获救的平 ...
- openwrt(一):openwrt源码下载及编译环境搭建
声明:从网上各位大神的博客学习,整理后记录,非原创. 注:请用非root用户来下载源码 导航: 1. openwrt编译环境搭建 2. openwrt源码下载 3. feeds更新 1. openwr ...
- Drazil and Tiles CodeForces - 516B (类拓扑)
Drazil created a following problem about putting 1 × 2 tiles into an n × m grid: "There is a gr ...