跑去看了黄学长的题解。。

  第一次听说级角排序= =因为一直见计算几何就跑= =

  级角排序就是按 原点和点连起来的边 与x轴正半轴构成的角的角度 排序。。。排序完效果就是逆时针旋转地枚举每个点。

  要求的是覆盖原点的三角形个数。。黄金三角形各有各的姿势,但是没覆盖原点的三角形都是一个德行= =。如果一个三角形没覆盖到原点的话那么原点与三个顶点连线所跨的角度<180度。。所以如果两个点与原点连线的夹角<180度的话,那么它俩可以和它们中间的点组合成不覆盖原点的三角形。。。

  总时间复杂度O(nlogn)(来自排序= =)。

  抄黄学长代码结果#1了囧。。。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define d double
#define ll long long
using namespace std;
const int maxn=;
struct zs{
int x,y;
d angel;
}a[maxn];
int i,j,k,n,m,r;
ll size,ans;
int ra,fh;char rx;
inline int read(){
rx=getchar();ra=;fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra*fh;
}
bool cmp(zs a,zs b){
return a.angel<b.angel;
}
inline bool judge(int b,int c){
return (ll)a[b].x*a[c].y>=(ll)a[b].y*a[c].x;
}
int main(){
n=read();
for(i=;i<=n;i++)a[i].x=read(),a[i].y=read(),a[i].angel=atan2(a[i].y,a[i].x);
sort(a+,a++n,cmp);
ans=(ll)n*(ll)(n-)*(ll)(n-)/(ll);
for(size=,r=,i=;i<=n;i++){
while(r+!=i&&judge(i,r+)){
size++,r++;
if(r>=n)r-=n;
}
ans-=(size-)*size>>;
size--;
}
printf("%lld\n",ans);
return ;
}

[bzoj1914] [Usaco2010 OPen]Triangle Counting 数三角形的更多相关文章

  1. bzoj1914 [Usaco2010 OPen]Triangle Counting 数三角形 计算机和

    [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 526  Solved: 2 ...

  2. 【计算几何】【极角序】【二分】bzoj1914 [Usaco2010 OPen]Triangle Counting 数三角形

    极角排序后枚举每个点,计算其与原点连线的左侧的半平面内的点与其组成的三角形数(二分/尺取),这些都不是黄金三角形. 补集转化,用平面内所有三角形的个数(C(n,3))减去这些即可. 精度很宽松,几乎不 ...

  3. [Usaco2010 OPen]Triangle Counting 数三角形

    [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 394  Solved: 1 ...

  4. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形 容斥

    1914: [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 272  Sol ...

  5. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形

    USACO划水中... 题目中要求经过原点的三角形数目,但这种三角形没什么明显的特点并不好求,所以可以求不经过原点的三角形数量. 对于一个非法三角形,它离原点最近的那条边连接的两个点所连的两条边一定在 ...

  6. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形——极角排序

    Description 在一只大灰狼偷偷潜入Farmer Don的牛群被群牛发现后,贝西现在不得不履行着她站岗的职责.从她的守卫塔向下瞭望简直就是一件烦透了的事情.她决定做一些开发智力的小练习,防止她 ...

  7. 【BZOJ】1914: [Usaco2010 OPen]Triangle Counting 数三角形

    [题意]给定坐标系上n个点,求能构成的包含原点的三角形个数,n<=10^5. [算法]极角排序 [题解]补集思想,三角形个数为C(n,3)-不含原点三角形. 将所有点极角排序. 对于一个点和原点 ...

  8. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形【叉积+极角排序+瞎搞】

    参考:https://blog.csdn.net/u012288458/article/details/50830498 有点神啊 正难则反,考虑计算不符合要求的三角形.具体方法是枚举每个点,把这个点 ...

  9. 【BZOJ1914】数三角形(组合数,极角排序)

    [BZOJ1914]数三角形(组合数,极角排序) 题面 BZOJ权限题 良心洛谷 题解 这种姿势很吼啊,表示计算几何啥的一窍不通来着. 题目就是这样,正难则反,所以我们不考虑过原点的三角形, 反过来, ...

随机推荐

  1. Struts2学习---result结果集

    这一章节主要介绍如何配置结果集,分为以下几个知识点: 结果集类型(result type) 全局结果集(global types) 动态结果集(dynamic type) 带有参数的结果集(type ...

  2. 【ASP.NET系列】详解Views

    描述 本片文章内容属于ASP.NET MVC系列视图篇,主要讲解View,大致内容如下: 1.Views文件夹讲解 2.View种类 3.Razor语法 4.对视图的基本操作 一   Views文件夹 ...

  3. softmax分类算法原理(用python实现)

    逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as n ...

  4. c# 了解c# 面向对象

    C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言.并定于在微软职业开发者论坛(PDC)上登台亮相.C#是微软公司研究员Anders Hejlsberg的最新 ...

  5. Nodejs的运行原理-架构篇

    前言 本来是想只做一个Nodejs运行原理-科普篇,但是收到了不少私信,要我多分享一些更进阶,更详细的内容,所以我会在接下来的两个月里继续更新Nodejs运行原理. PS:此系列只做Nodejs的运行 ...

  6. PHP call_user_func

    <?php function my_call_back_function(){ echo "hello world!"; } class MyClass{ static fu ...

  7. C# System.Windows.Forms.NumericUpDown 控件全选其中文字

    num_length.Focus();                    UpDownBase updbText = (UpDownBase)num_length;                 ...

  8. Url Rewrite 再说Url 重写

    前几天看到园子里一篇关于 Url 重写的文章<获取ISAPI_Rewrite重写后的URL>, URL-Rewrite 这项技术早已不是一项新技术了,这个话题也已经被很多人讨论过多次.搜索 ...

  9. 阿里云ECS搭建SVN配置外网

    阿里云ECS搭建SVN后,配置外网启动不了,检查云服务器没发现问题,后来发现是阿里云拦截,需要在阿里云控制台ECS安全组新增如下配置:

  10. 一图看懂java内存模型

    熟话说一张好图胜过千言万语,在此便将java内存模型重新整理了一次,将细节标注到图中献给需要的同学: