Connections between cities

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 896 Accepted Submission(s): 236
 
Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
            For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 
Sample Output
Not connected
6
Hint

Hint Huge input, scanf recommended.

 
 
Source
2009 Multi-University Training Contest 8 - Host by BJNU
 
Recommend
gaojie
 
/*
用vector炸了,还是用邻接表卡过的
*/
#include<bits/stdc++.h>
using namespace std;
#define M 10007
#define N 2222212
int bin[M],dis[M],vis[M],cur[N],root[M];
int s1[N],s2[N],t[N],d[N],p[N];
int n,m,ne,cnt; int find(int x)
{
while(x!=bin[x])
x=bin[x];
return x;
} void add(int u,int v,int w,int h[])
{
t[ne]=v,d[ne]=w,p[ne]=h[u],h[u]=ne++;
t[ne]=u,d[ne]=w,p[ne]=h[v],h[v]=ne++;
}
/*
LCA算法以某一个节点作为根节点,开始遍历,遍历到一个结点先判断与它相关的结点是不是有已经被访问过的,
如果有的话,判断两个结点是不是在同一棵树上,如果是的话就保留最近公共祖先的距离,如果不是的话,就是不能到达,距离就赋值为-1 */
void LCA(int u)
{
root[u]=cnt;
bin[u]=u;
vis[u]=;
//遍历查询树
for(int i=s2[u];i;i=p[i])
{
int v=t[i];
if(vis[v])
{
if(root[u]==root[v])//在同一棵树下
{
int rt=find(v);//最近公共祖先
cur[d[i]]=dis[u]+dis[v]-*dis[rt];
}
else
cur[d[i]]=-;
} }
//遍历城市图
for(int i=s1[u];i;i=p[i])
{
int v=t[i];
if(!vis[v])
{
dis[v]=dis[u]+d[i];
LCA(v);
bin[v]=u;//路径压缩
}
}
} int main()
{
//freopen("C:\\Users\\acer\\Desktop\\in.txt","r",stdin);
int n,m,q,i,j;
while(scanf("%d%d%d",&n,&m,&q)!=EOF)
{
for(i=,ne=;i<=n;i++)
{
s1[i]=s2[i]=vis[i]=cur[i]=root[i]=bin[i]=;
}
int u,v,w;
for(i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,s1);
}
for(i=;i<=q;i++)
{
scanf("%d%d",&u,&v);
add(u,v,i,s2);
}
for(i=,cnt=;i<=n;i++,cnt++)
if(!vis[i])
{
dis[i]=;
LCA(i);
} for(i=;i<=q;i++)
if(cur[i]>=)
printf("%d\n",cur[i]);
else
printf("Not connected\n");
}
return ;
}
#include<bits/stdc++.h>
#define N 10005
using namespace std;
int n,m,c;
int bin[N];
int root[N];//表示点i的根节点
int roo;//表示当前是以哪个结点为根节点遍历的
int dis[N];//标记结点i到根结点的距离
int vis[N];//标记i点是否被访问过
int cur[N];//表示第几组解
int op[N][N];//表示解是第几组
struct node
{
int v,val;
node(){}
node(int a,int b)
{
v=a;
val=b;
}
};
vector<node>edge[N];
vector<node>edg[N];
int findx(int x)
{
while(x!=bin[x])
x=bin[x];
return x;
}
/*
Tarjan算法以某一个节点作为根节点,开始遍历,遍历到一个结点先判断与它相关的结点是不是有已经被访问过的,
如果有的话,判断两个结点是不是在同一棵树上,如果是的话就保留最近公共祖先的距离,如果不是的话,就是不能到达,距离就赋值为-1 */
int LCA(int u)
{
//首先遍历查询树
root[u]=roo;
vis[u]=;
bin[u]=u;
for(int i=;i<edg[u].size();i++)
{
int nex=edg[u][i].v;
if(vis[nex]==)//这个点遍历过了
{
if(root[u]==root[nex])
{
int rt=findx(nex);
cur[op[u][nex]]=dis[u]+dis[nex]-*dis[rt];//
}
else
cur[op[u][nex]]=-;
}
}
//然后就是遍历程城市树
for(int i=;i<edge[u].size();i++)
{
int nex=edge[u][i].v;
if(vis[nex]) continue;
dis[nex]=dis[u]+edge[u][i].val;//父节点到根节点的距离,加上到父节点的距离
LCA(nex);
bin[nex]=u;//路径压缩
}
}
int x,y,val;
void inti()
{
for(int i=;i<=n;i++)
{
edge[i].clear();
edg[i].clear();
bin[i]=i;
cur[i]=-;
dis[i]=;
vis[i]=;
}
}
int main()
{
//freopen("C:\\Users\\acer\\Desktop\\in.txt","r",stdin);
while(scanf("%d%d%d",&n,&m,&c)!=EOF)
{
inti();
//构建城市的图
for(int i=;i<m;i++)
{
scanf("%d%d%d",&x,&y,&val);
edge[x].push_back(node(y,val));
edge[y].push_back(node(x,val));
}
//构建查询树
for(int i=;i<c;i++)
{
scanf("%d%d",&x,&y);
op[x][y]=op[y][x]=i;
edg[x].push_back(node(y,));
edg[y].push_back(node(x,));
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
roo=i;
dis[i]=;
LCA(i);
}
}
for(int i=;i<c;i++)
{
if(cur[i]==-)
puts("Not connected");
else
printf("%d\n",cur[i]);
}
}
return ;
}

Connections between cities的更多相关文章

  1. hdu 2874 Connections between cities [LCA] (lca->rmq)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  2. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  3. hdu 2874 Connections between cities 带权lca判是否联通

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  4. hdu 2874 Connections between cities(st&rmq LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  5. hdu 2874 Connections between cities (并查集+LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  6. hdu-2874 Connections between cities(lca+tarjan+并查集)

    题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others)     Memory Limit: 32768/327 ...

  7. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  8. HDU——2874 Connections between cities

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  9. Connections between cities LCA

    Problem Description After World War X, a lot of cities have been seriously damaged, and we need to r ...

随机推荐

  1. Mybatis逆向生成Mapper文件

    本文参考博客 http://blog.csdn.net/for_my_life/article/details/51228098 1. 在resources根目录下添加generator.proper ...

  2. Opengl4.5 中文手册—A

    因为opengl API 比较庞大,网络上还没有完整的.较新的opengl中文手册 这对很多人很不方便,所以整理了这一系列,用于帮助大家"快速浏览最新的opengl api" 为了 ...

  3. CentOS 7安装squid代理服务器

    Squid,一个高性能的代理缓存服务器,支持FTP.gopher.HTTP协议. Squid,一个缓存Internet 数据的软件,其接收用户的下载申请(作为代理服务器),并自动处理所下载的数据,并返 ...

  4. swoole 入门

    1. 概述 Swoole是PHP的一个扩展,但是它与普通的扩展不同,普通的扩展知识提供一个库函数,而Swoole扩展在运行后会接管PHP的控制器,进入时间循环.当IO时间发生后,Swoole会自动回调 ...

  5. Nunit测试工具使用实例

    前言: 本文主要是介绍了Nunit的基本使用,其中参详了很多已有的文章,由于最近要使用其进行测试,所以对网上的文章做了下整理,同时加入了一些自己的实践. NUnit的属性 TestFixture 它标 ...

  6. python Synchronization between processes

    进程间同步,可以使用lock进行控制. 官方文档的例子如下: from multiprocessing import Process, Lock def f(l, i): l.acquire() pr ...

  7. ZOJ2345Gold Coins 简单分块

    昨天做过一样的题: 平方和公式:n*(n+1)*(2n+1) #include<cstdio> #include<cstdlib> #include<iostream&g ...

  8. winPcap编程之获取适配器详细信息(三)

    显示适配器详细信息 先贴上代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #includ ...

  9. Django 模型中自定义Manager和模型方法

    1.自定义管理器(Manager) 在语句Book.objects.all()中,objects是一个特殊的属性,通过它来查询数据库,它就是模型的一个Manager. 每个Django模型至少有一个m ...

  10. java 集合之实现类ArrayList 和 LinkedList

    List 的方法列表 方法名 功能说明 ArrayList() 构造方法,用于创建一个空的数组列表 add(E e) 将指定的元素添加到此列表的尾部 get(int index) 返回此列表中指定位置 ...