Machine Learning and Data Mining Lecture 1
Machine Learning and Data Mining Lecture 1
1. The learning problem - Outline
1.1 Example of machine learning
Predicting how a viewer will rate a moive?
10% improvement = 1 million dollar prize
The essence of machine learning:
A pattern exists
We cannot pin it down mathematically
We have data
The following method is not machine learning.
When you tag viewer from different perspective(attributes) and predict other viewer with the similar attributes,it's not machine learning.


Components of learning

Formalization:
Input: x (customer application)
Output: y (good/bad customer)
Target Function: f: x->y (ideal credit approval formula)
Data:(x1,y1),(x2,y2),(x3,y4),.....,(xn,yn)
Hypothesis: g: x->y



Supervised Learning
Example from vending machines - coin recogniztion.
The input data can be classify.
Unsupervised Learning
There are the data and good luck try to predict the credit.
For example, when you learning a foreign language, you have no other resource to learn , what you have is the radio . So
you listen it everyday even though you don't understand it. but eventually,your brain will build a model in your head.
when you have a teacher to teach you the foreign language, you will be able to learning that foreign language much faster.
Reinforcement Learning
we get(input, some output, grade for the output)
1.2 Components of Learning
1.3 A simple model
1.4 Types of learning
1.5 Puzzle
Machine Learning and Data Mining Lecture 1的更多相关文章
- How do you explain Machine Learning and Data Mining to non Computer Science people?
How do you explain Machine Learning and Data Mining to non Computer Science people? Pararth Shah, ...
- Note for video Machine Learning and Data Mining——Linear Model
Here is the note for lecture three. the linear model Linear model is a basic and important model in ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Note for video Machine Learning and Data Mining——training vs Testing
Here is the note for lecture five. There will be several points 1. Training and Testing Both of th ...
- Machine Learning and Data Science 教授大师
http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...
- Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐
核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- How to use data analysis for machine learning (example, part 1)
In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...
- (转)8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset
8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on August ...
随机推荐
- Win10 + Python + GPU版MXNet + VS2015 + RTools + R配置
最近入手一台GTX 1070的笔记本,手痒想在win10上试下GPU跑模型,所以就有了接下来的安装GPU版mxnet的坎坷历程,经过多重试验终于搞定了python和R安装mxnet,现将主要点记录如下 ...
- 项目管理之 Git 管理软件 SourceTree for Mac
Git 项目管理: Mac Terminal 生成 Git 秘钥流程: git config --global user.name "yourname" git config -- ...
- centos 修改主机映射
[root@m1 ~]# vi /etc/hosts
- {网络编程}和{多线程}应用:基于TCP协议【实现多个客户端发送文件给一个服务器端】--练习
要求: 实现多个客户端发送文件给一个服务器端 提示:多个人创建客户端发送文件,服务端循环接收socket,从socket中获取文件 说明:这里我们只要建立一个服务端就可以了,然后让多台电脑使用客户端给 ...
- TLS1.0和TLS1.1的区别
TLS1.1是对TSL1.0的改进其中包括: 改进"抗抵赖"安全特性上的缺陷 完成协议对椭圆曲线的支持,提出了改进的支持ECC算法的传输层安全协议, 握手协议引入了数字签名及验证机 ...
- Linux SSH安全技巧
SSH服务器配置文件是/etc/ssh/sshd_conf.在你对它进行每一次改动后都需要重新启动SSH服务,以便让改动生效. 1.修改SSH监听端口默认情况下,SSH监听连接端口22,攻击者使用端口 ...
- HTTPS系列干货(一):HTTPS 原理详解
HTTPS(全称:HyperText Transfer Protocol over Secure Socket Layer),其实 HTTPS 并不是一个新鲜协议,Google 很早就开始启用了,初衷 ...
- JDBC加载数据库驱动的方式
JDBC作为数据库访问的规范接口,其中只是定义一些接口.具体的实现是由各个数据库厂商来完成. 一.重要的接口: 1.public interface Driver 每个驱动程序类必须实现的接口.Jav ...
- string services
string通用字符串操作: re,正则表达式 difflib,比较序列 stringIO:以文件的方式来读和写字符串 CstringIO:更快捷的stringIO版本 textwrap:文本包装和填 ...
- 常用JS图片滚动(无缝、平滑、上下左右滚动)代码大全
innerHTML: 设置或获取位于对象起始和结束标签内的 HTML scrollHeight: 获取对象的滚动高度. scrollLeft: 设置或获取位于对象左边界和窗口中目前可见内容的 ...