怎样学习哲学

时间限制: 1 Sec  内存限制: 128 MB
提交: 97  解决: 27
[提交][状态][讨论版]

题目描述

OI大师抖儿在夺得银牌之后,顺利保送pku。这一天,抖儿问长者:“虽然我已经保送了,但是我还要参加学考。马上就要考政治了,请问应该怎样学习哲学,通过政治考试?”
 长者回答:“你啊,Too Young Too Simple,Sometimes Naive!哲学这种东西,不是说想懂就能懂的,需要静心撕烤。你去后面的森林里好好想想。”
长者的后院有一片哲♂学森林。由于一些奥妙重重的原因,这片森林构成了一个n*m的矩形,其中每个点就代表了一棵树。此外,由于辣鸡出题人KJDH从中捣鬼,有些树被连根拔起(也就是消失了)。抖儿每天都要到树下撕烤,因此他想要在每一行选择一棵树。但是他非常讨厌走回头路,因此第i行选择的树必须比第i-1行的靠右。现在抖儿想知道,总共有多少种选择的方案。

输入

第一行三个整数n,m,p,分别表示森林的长、宽,以及消失的树的数目。
接下来p行每行两个整数,表示第ai行第bi列的树消失了。

输出

一行一个整数,表示方案数。由于答案可能很大,请对1000003取模。

样例输入

3 5 2
2 3
3 4

样例输出

5

提示

【样例说明】
方案一:选(1,1)(2,2)(3,3)
方案二:选(1,1)(2,2)(3,5)
方案三:选(1,1)(2,4)(3,5)
方案四:选(1,2)(2,4)(3,5)
方案五:选(1,3)(2,4)(3,5)
 
题解,可以将其看成三角形的一个类似的,走法问题,就是半三角形走法,然后就是发现方案数是C(n,m),这个是可以推出来,
然后就是dp,当前节点的方案数总,是它左上部分经过不合法点到达其的方案数之和,相减即为走到该点方案数。
这样可以证明,到该点的方案数是所有,因为任何经过左上的dp[i]方案中,是表示到达dp[i]的合法方案数,因此通过数学归纳法得证,
这个推断是正确的,为了简便,将n+1,m+1这棵树拔掉,然后这个点的方案数,就为结果了。
 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#define mod 1000003
#define ll long long
#define Q 2007
using namespace std; int n,m,q;
ll p[mod+],inv[mod+],dp[Q];
struct Node
{
int x,y;
}a[Q]; bool cmp(Node x,Node y)
{
return x.x<y.x;
}
ll ksm(ll a,ll b)
{
ll ans=;
while (b)
{
if (b&) ans=a*ans%mod;
b/=;
a=a*a%mod;
}
return ans;
}
ll Lucas_C(int n,int m)
{
if (n<m) return ;
if (m==) return ;
if (n==m) return ;
if (n<mod) return p[n]*inv[m]%mod*inv[n-m]%mod;
else return Lucas_C(n%mod,m%mod)*Lucas_C(n/mod,m/mod)%mod;
}
int main()
{
p[]=;
for (int i=;i<=mod;i++)
p[i]=(p[i-]*i)%mod;
for (int i=;i<=mod;i++)
inv[i]=ksm(p[i],mod-);
scanf("%d%d%d",&n,&m,&q); for (int i=;i<=q;i++)
scanf("%d%d",&a[i].x,&a[i].y);
q++,a[q].x=n+,a[q].y=m+;
sort(a+,a+q+,cmp);
for (int i=;i<=q;i++)
{
dp[i]=Lucas_C(a[i].y-,a[i].x-);
for (int j=;j<i;j++)
if (a[i].x>a[j].x&&a[i].y>a[j].y)
dp[i]=(dp[i]-dp[j]*Lucas_C(a[i].y-a[j].y-,a[i].x-a[j].x-)%mod+mod)%mod;
}
printf("%lld",dp[q]);
}

怎样学好哲学(lucas+费马小定理)的更多相关文章

  1. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  2. BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)

    题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...

  3. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  4. [CodeVs1515]跳(lucas定理+费马小定理)

    嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...

  5. 【bzoj1951】[Sdoi2010]古代猪文 费马小定理+Lucas定理+中国剩余定理

    题目描述 求  $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个 ...

  6. bzoj 1951 lucas crt 费马小定理

    首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod  (p-1)) mod p 那么问题的关键就 ...

  7. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  8. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  9. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

随机推荐

  1. Python初学——pickle & set

    pickle 存放数据 保存和提取python运算完的结果 首先import pickle模块 定义一个字典: a_dict={'da':111,2:[23,1,4],'23':{1:2,'d':'s ...

  2. CSS布局技巧大全

    参考资料: http://www.imooc.com/article/2235 单列布局 水平居中 父元素text-align:center;子元素:inline-block; 优点:兼容性好: 不足 ...

  3. HK2框架的简单自实现kunJ

    kunJ kunJ框架,是基于HK2框架的一个自实现注入框架,功能比较简单,重在探索依赖注入的实现原理. 实现细节 自定义3个注解,Access,Inject,Service 在Service中实现对 ...

  4. jmeter ---json几种读取方式,ArrayList循环读取

    在之前写过提取json数据格式的文章,这次对jmeter读取json数据格式进行整理. 举例一个接口的response 格式如下: { "data" : { "devic ...

  5. markdown常用语法教程

    1. 标题 总共六级标题,"#"号后面最好加空格,美观可以在后面加上对应数量的"#" # 一级标题 ## 二级标题 ### 三级标题 #### 四级标题 ### ...

  6. [转]Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用

    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp86   前两篇文章已经对Fork Join的设计和JDK中源码的简要分析 ...

  7. 原创:LNMP架构部署个人博客网站 禁止转载复制

    nginx编译安装步骤 ①. 检查软件安装的系统环境 cat /etc/redhat-release uname -r ②. 安装nginx的依赖包(pcre-devel openssl-devel) ...

  8. 201521123107 《Java程序设计》第6周学习总结

    第6周作业-接口.内部类与Swing 1.本周学习总结 2.书面作业 1.clone方法 1.1 Object对象中的clone方法是被protected修饰,在自定义的类中覆盖clone方法时需要注 ...

  9. 201521123022 《Java程序设计》 第四周学习总结

    1. 本章学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2. 使用常规方法总结其他上课内容. ①instenceof运算符:可通过它判断父类引用对象实例的实际类型,且在父类转化成子类时 ...

  10. 201521123019 《Java程序设计》第3周学习总结

    1. 本周学习总结 2. 书面作业 (1)代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; ...