A Bayesian election prediction, implemented with R and Stan
If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.
But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.
A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)
One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:
To check out the latest forecast from Kremp's model, follow the link below.
Slate: State and National Poll Aggregation
转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html
A Bayesian election prediction, implemented with R and Stan的更多相关文章
- Bayesian CTR Prediction for Bing
Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...
- AI习惯的数学书籍、计算机经典书籍
http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...
- An Introduction to Greta
I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...
- BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)
Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...
- 源码解读etcd heartbeat,election timeout之间的拉锯
转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...
- How to Configure the Gradient Boosting Algorithm
How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- AI:PR的数学表示-传统方法PR
前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...
- 统计学习方法:罗杰斯特回归及Tensorflow入门
作者:桂. 时间:2017-04-21 21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...
随机推荐
- 重新认识JavaScript里的数据类型
一.序 数据类型,平时天天在用,今日闲暇便重新阅读了JavaScript数据类型这块,才发现平时用的时候有许些错误和不足,且对此深有感悟,便写下这篇文章加以巩固基础知识并有空翻出来温故而知新. 二.概 ...
- preg_*匹配的字符串长度限制问题以及nginx,php上传文件过大问题
问题背景 使用插件上传高清图片,用的插件base64转码的,上传失败,接口提示:413 (Request Entity Too Large) 问题分析与解决 首先想到的是nginx和php的服务器配 ...
- Java--向数据库添加txt文件中的批量数据
大家可能会遇到这样的问题,在做一个项目时需要操作数据库,需要有大量的数据需要导入到数据库中,这部分数据存到了txt文档中(可以把Word文档中的数据弄到txt文档),总不能每一条数据都复制黏贴到数据库 ...
- JS中的几种函数
函数可以说是js中最具特色的地方,在这里我将分享一下有关函数的相关知识: 包装函数: (function foo(){...})作为函数表达式意味着foo只能在...所代表的位置中被访问 ...
- python基本数据类型——set
一.集合的定义 set集合,是一个无序且不重复的元素集合. 集合对象是一组无序排列的可哈希的值,集合成员可以做字典中的键.集合支持用in和not in操作符检查成员,由len()内建函数得到集合的基数 ...
- 开始奇妙的DP之旅
铭记各位大佬教导,开始看一些很迷的动态规划,那就从比较典型的01背包开始吧,想想还是从比较简单的导弹拦截开始吧,说简单都是骗人的,还是看采药吧. 一.动态规划 刚听到动态规划这个东西,据HLT大佬所言 ...
- MySQL 的Coalesce函数
今天用到了coalesce 函数,原因在于,我想要查找合同到期日的字段是否有值(因为合同到期日分3个字段,对应着不同的日期) select coalesce(contract_date1,contra ...
- Ruby中有意思的块
块:是在调用方法时,能与参数一起传递的多个处理的集合 简单点说,跟在方法执行后面的do |变量| end就是一个块,这个块会被传入方法中去执行! 这个非常厉害,非常有意思! 在ruby中,如果需要便利 ...
- js判断字符串是否全为空(使用trim函数/正则表达式)
我们需要判断用户输入的是否全是空格,可以使用以下方法: 方法一: 使用trim() /* 使用String.trim()函数,来判断字符串是否全为空*/ function kongge1(test) ...
- LESS的一点自己的理解(1)
写前端的时间也不短了,Less也用过几次,都是现学现用,没有仔细的梳理过,今天就有条理的梳理下.参考文章是一篇不错的哦.下面会附上链接的,废话不多说,开始正题. 首先应该说下什么是Less,Less是 ...