If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.

But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.

A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)

One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:

To check out the latest forecast from Kremp's model, follow the link below.

Slate: State and National Poll Aggregation

转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html

A Bayesian election prediction, implemented with R and Stan的更多相关文章

  1. Bayesian CTR Prediction for Bing

    Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...

  2. AI习惯的数学书籍、计算机经典书籍

    http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...

  3. An Introduction to Greta

    I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...

  4. BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)

    Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...

  5. 源码解读etcd heartbeat,election timeout之间的拉锯

    转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...

  6. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  7. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  8. AI:PR的数学表示-传统方法PR

    前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...

  9. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

随机推荐

  1. 20170410Linux备课资料 --- 压缩与解压缩

    这节课我们来学习一下压缩与解压缩,那什么是压缩与解压缩呢? 联想一下Windows系统: 选中文件,右键选择即可 如果压缩,可以选择要压缩的格式,而解压缩直接选择就可以完成了 Linux是通过命令的方 ...

  2. Tensorflow学习笔记---0--TensorBoard

    运行mnist_with_summaries学习TensorBoard时,由于需要GPU支持,运行窗口报错:Couldn't open CUDA library cupti64_80.dll 解决办法 ...

  3. 打印星号(*)三角形(C# Linq实现)的小例子

    以前看面试宝典(C#)的时候,记得有一道题是打印三角形的.比如下图: 记得那时候刚学C#花了我好长时间才做出来,那是用的方法没有使用到linq,现在使用Linq重新做一次.以下是代码: ; ; i & ...

  4. 2017年4月 TIOBE 编程语言排名

    2017年4月 TIOBE 编程语言排名 Hack是Facebook 在三年推出的PHP方言,在2017年4月首次进入TIOBE编程语言排行榜前50位. Hack原是Facebook的内部项目,与20 ...

  5. 设置spring-boot的logging

    spring-boot默认使用logback来记录logger,spring-boot的包里面org.springframework.boot.logging.logback路径下面有一些配置文件,默 ...

  6. JS模式--通用对象池的实现

    var objectPoolFactory = function (createObjFn) { var objectPool = []; return { create: function () { ...

  7. 杜教筛 && bzoj3944 Sum

    Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...

  8. ASP.NET WebForm

    ASP.NET WEBFORM Aspx aspx文件(新建项→Web窗体) .在aspx中可以使用<%=表达式%>的方式在页面的当前位置输出表达式(表达式至少要用protected级别, ...

  9. poj1159二维树状数组

    Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows ...

  10. for循环之初学者N多算法小练习

    for循环之初学者N多算法小练习 显示1到100的数,每行显示5个. for (int i=1;i<=100;i++){     if (i%5==0){         System.out. ...