If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.

But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.

A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)

One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:

To check out the latest forecast from Kremp's model, follow the link below.

Slate: State and National Poll Aggregation

转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html

A Bayesian election prediction, implemented with R and Stan的更多相关文章

  1. Bayesian CTR Prediction for Bing

    Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...

  2. AI习惯的数学书籍、计算机经典书籍

    http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...

  3. An Introduction to Greta

    I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...

  4. BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)

    Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...

  5. 源码解读etcd heartbeat,election timeout之间的拉锯

    转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...

  6. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  7. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  8. AI:PR的数学表示-传统方法PR

    前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...

  9. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

随机推荐

  1. ios url网址相关问题解说

    问题1:ios网址中存在汉字的情况,需要GB_18030_2000编码方法如下: // 汉字转编码 + (NSString *)changeChineseWithEncodingGB_18030_20 ...

  2. Linux:一位猫奴的意外产物

    作者:Vamei,严禁任何形式转载. 1991年年中,林纳斯·托瓦兹(Linus Torvalds)在自己房间里敲着键盘.他全神贯注地盯着14寸的黑色屏幕,都没感觉到自己的小猫Randi在扒自己的裤腿 ...

  3. Linq: Aggregate

    Aggregate累加器 今天看东西的时候看见这么个扩展方法Aggregate(累加器)很是陌生,于是乎查了查,随手记录一下. 直接看一个最简答的版本,其他版本基本没什么区别,需要的时候可看一下 pu ...

  4. nginx负载均衡(一)

    背景: 最近公司分配一个项目,做一个直播APP的后台,像这种随时都有用户在线的情况,后台一定不能down掉,而且只做一台服务器的话压力肯定很大,所以考虑用nginx做负载均衡 环境: 三台linux服 ...

  5. JS的块级作用域

    今天带来的是 "对<你不知道的js>中块级作用域的总结" 分享: 1)用with从对象中创建出来的作用域只在with声明中而非外部作用域有效,同时可以访问已有对象的属性 ...

  6. require.js+bootstrap实现简单的页面登录和页面跳转

    小颖的这个demo其实很简单的,大家一起来先来看看页面效果图:          目录: 代码: inde.html <!DOCTYPE html> <html> <he ...

  7. UPYUN云服务体验计划,阅读神器Kindle、LaCie移动硬盘、索尼大法充电宝、高大上极路由、UPYUN代金券等你拿!

    请看以下的“通关攻略”,分享你对云服务的“体验心得”,即可赢取绝佳的“通关宝藏”,阅读神器Kindle.LaCie移动硬盘.索尼大法充电宝.高大上极路由.UPYUN代金券等你拿!先来了解下UPYUN能 ...

  8. log4j.properties详细配置

    转自:http://blog.sina.com.cn/s/blog_5ed94d710101go3u.html ①配置根Logger,其语法为: #log4j.rootLogger = [level] ...

  9. [UWP]了解模板化控件(8):ItemsControl

    1. 模仿ItemsControl 顾名思义,ItemsControl是展示一组数据的控件,它是UWP UI系统中最重要的控件之一,和展示单一数据的ContentControl构成了UWP UI的绝大 ...

  10. jdbc连接数据库工具包模板

    jdbc连接数据库操作 jdbc连接数据库模板,收藏可做模板使用(小型工程,一般大工程都会用框架,c3p0等连接,不考虑此种方法!). 配置文件的使用(使用配置文件可以使我们后期的修改更加方便,当然, ...