If the media coverage is anything to go by, people are desperate to know who will win the US election on November 8. Polls give us some indication of what's likely to happen, but any single poll isn't a great guide (despite the hype that accompanies some of them). One poll is subject to any number of possible errors, statistical and otherwise: the sample, the methodology, the analysis, or even deliberate bias.

But put a whole bunch of polls together, and you can assemble a more realistic picture of the likely outcome, and the uncertainty associated with it. That's what poll aggregators likeFiveThirtyEight do: take state and national polls, etimate pollster biases and correlations between states, incorporate other influential variables (like economic data) and build a statistical model to forecast the number of electoral college seats won by each candidate (which in US elections, is pretty much the only thing that matters). FiveThirtyEight's methodology is a sound one, and has been largely successful at predicting elections, but the actual details of the process they use is secret, and is thus itself subject to accusations (unfounded, IMO) of bias.

A new election forecast by Pierre-Antoine Kremp, uses a similar (but Bayesian) process to predict the election, and all of the methodology is transparent and open. The forecast is implemented in the R programming language and Stan, the Bayesian computation engine. (The new model wasintroduced by Stan author Andrew Gelman on Slate, which hosts its forecasts.) All of the data, code and the generated report are available to inspect on GitHub, and the statistical methodology is included with every forecast (scroll down to the Model section). The model itself is based on the Votamatic model by Drew Linzer, which was very successful at predicting the 2012 election. As of this writing on November 2, the model predicts a win by Hillary Clinton with a probability of 88%. (FiveThirtyEight's polls-only forecast gives her a 69.9% chance.)

One interesting chart included in the report is the state-by-state probabilities of winning. Nothing shows how divided this country is than how few states are actually competitive at all:

To check out the latest forecast from Kremp's model, follow the link below.

Slate: State and National Poll Aggregation

转自:http://blog.revolutionanalytics.com/2016/11/a-bayesian-election-forecast.html

A Bayesian election prediction, implemented with R and Stan的更多相关文章

  1. Bayesian CTR Prediction for Bing

    Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for ...

  2. AI习惯的数学书籍、计算机经典书籍

    http://download.csdn.net/download/wz619899442/8405297 https://www.amazon.com/Introduction-Automata-T ...

  3. An Introduction to Greta

    I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually ...

  4. BAYESIAN STATISTICS AND CLINICAL TRIAL CONCLUSIONS: WHY THE OPTIMSE STUDY SHOULD BE CONSIDERED POSITIVE(转)

    Statistical approaches to randomised controlled trial analysis The statistical approach used in the ...

  5. 源码解读etcd heartbeat,election timeout之间的拉锯

    转一个我在知乎上回答的有关raft election timeout/ heartbeat interval 的回答吧. 答:准确来讲: election是timeout,而heartbeat 是in ...

  6. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  7. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  8. AI:PR的数学表示-传统方法PR

    前言: 接上一篇:AI:模式识别的数学表示 在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法.在结构上,几乎所有的PR方法都是可解释的.且任一传统方法,在一定约束下,可以转换为SV近邻 ...

  9. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

随机推荐

  1. EF的DbSet属性的Where查询,注意事项

    #1 Func<T,bool>与 Expression<Func<T,bool>>的区别 Func<T,bool>本身就是一个委托(delegate), ...

  2. 使用Three.js的材质

    1.three.js提供哪些材质? MeshBasicMaterial(网格基础材质)/基础材质,,可以用它富裕几何体一种简单的亚瑟,或者显示几何体的线框 MeshDepthMaterial(网格深度 ...

  3. OnsenUI 前端框架(三)

    上一章咱们学习了OnsenUI的工具栏.侧边栏和标签栏.通过对页面上这三部分的学习,咱们对混合应用的一个页面有了大体上的认识.从这一章开始,咱们学习OnsenUI混合项目开发过程中会用到的各种各样的组 ...

  4. Jquery遍历数组之$().each()方法和$.each()方法

    前几天面试碰到了一个笔试问题:用jquery变了数组. 总结一下用jquery遍历数组的两种方法: 一.$().each()方法 <head><meta http-equiv=&qu ...

  5. C语言学习第八章

    今天开始学习字符串,学完以后最低要做到了解什么是字符串,以及字符串的一些应用方法,毕竟字符串还是很常见的. 简单的字符串"helloworld",这个字符串大家应该都很眼熟,学编程 ...

  6. 在Delphi下使用迅雷APlayer组件进行免注册开发

    之前都是用的delphi下的dspack进行的视频开发,这个组件其实很好用,就是找解码器麻烦点,而且还得在客户的计算机上使用RegSvr32.exe也注册解码器,要不有可能播放不了. 结果在查找合适的 ...

  7. CodeSmith生成实体的分页读取规则

    首先.我得向咱们博客园提个意见,能不能我写的东西就给预保存下呢?刚才我写半天,只因为这个不给力的IE浏览器死了,导致我白写了,如果这要是那个大神直接在这上面写的非常有技术含量的贴着会因此而丢失实在是有 ...

  8. Linux IO barrier

    I/O顺序问题是一个比较综合的问题,它涉及的层次比较多,从VFS page cache到I/O调度算法,从IO子系统到存储外设.而Linux I/O barrier就是其中重要的一部分. 可能很多人认 ...

  9. 蓝桥杯-循环节长度-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  10. 分布式锁与实现(二)——基于ZooKeeper实现

    引言 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...