1.当驱动有误时,比如,访问的内存地址是非法的,便会打印一大串的oops出来

1.1以LED驱动为例

将open()函数里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下图所示:

1.2然后编译装载26th_segmentfault并执行测试程序后,内核便打印了oops出来,如下图所示:

2.接下来,我们便来分析oops:

Unable to handle kernel paging request at virtual address
      //无法处理内核页面请求的虚拟地址56000050 pgd = c3850000
[] *pgd= Internal error: Oops: [#]
        //内部错误oops Modules linked in: 26th_segmentfault
        //表示内部错误发生在26th_segmentfault.ko驱动模块里 CPU: Not tainted (2.6.22.6 #)
PC is at first_drv_open+0x78/0x12c [26th_segmentfault]
        //PC值:程序运行成功的最后一次地址,位于first_drv_open()函数里,偏移值0x78,该函数总大小0x12c LR is at 0xc0365ed8 //LR值 /*发生错误时的各个寄存器值*/
pc : [<bf000078>] lr : [<c0365ed8>] psr:
sp : c3fcbe80 ip : c0365ed8 fp : c3fcbe94
r10: r9 : c3fca000 r8 : c04df960
r7 : r6 : r5 : bf000de4 r4 :
r3 : r2 : r1 : r0 : Flags: Nzcv IRQs on FIQs on Mode SVC_32 Segment user
Control: c000717f Table: DAC:
Process 26th_segmentfau (pid: , stack limit = 0xc3fca258)
            //发生错误时,进程名称为26th_segmentfault Stack: (0xc3fcbe80 to 0xc3fcc000) //栈信息
be80: c06d7660 c3e880c0 c3fcbebc c3fcbe98 c008d888 bf000010 c04df960
bea0: c3e880c0 c008d73c c0474e20 c3fb9534 c3fcbee4 c3fcbec0 c0089e48 c008d74c
bec0: c04df960 c3fcbf04 ffffff9c c002c044 c380a000 c3fcbefc c3fcbee8
bee0: c0089f64 c0089d58 c3fcbf68 c3fcbf00 c0089fb8 c0089f40
bf00: c3fcbf04 c3fb9534 c0474e20 c3851000
bf20: c3fca000 c04c90a8 c04c90a0 ffffffe8 c380a000 c3fcbf68 c3fcbf48
bf40: c008a16c c009fc70 c04df960 be84ce38 c3fcbf94
bf60: c3fcbf6c c008a2f4 c0089f88 be84ce84 0000877c
bf80: c002c044 4013365c c3fcbfa4 c3fcbf98 c008a3a8 c008a2b0 c3fcbfa8
bfa0: c002bea0 c008a394 be84ce84 be84ce30 be84ce38 be84ce30
bfc0: be84ce84 0000877c 4013365c be84ce58
bfe0: be84ce28 0000266c 400c98e0 be84ce30 Backtrace: //回溯信息
[<bf000000>] (first_drv_open+0x0/0x12c [26th_segmentfault]) from [<c008d888>] (chrdev_open+0x14c/0x164)
r5:c3e880c0 r4:c06d7660
[<c008d73c>] (chrdev_open+0x0/0x164) from [<c0089e48>] (__dentry_open+0x100/0x1e8)
r8:c3fb9534 r7:c0474e20 r6:c008d73c r5:c3e880c0 r4:c04df960
[<c0089d48>] (__dentry_open+0x0/0x1e8) from [<c0089f64>] (nameidata_to_filp+0x34/0x48)
[<c0089f30>] (nameidata_to_filp+0x0/0x48) from [<c0089fb8>] (do_filp_open+0x40/0x48)
r4:
[<c0089f78>] (do_filp_open+0x0/0x48) from [<c008a2f4>] (do_sys_open+0x54/0xe4)
r5:be84ce38 r4:
[<c008a2a0>] (do_sys_open+0x0/0xe4) from [<c008a3a8>] (sys_open+0x24/0x28)
[<c008a384>] (sys_open+0x0/0x28) from [<c002bea0>] (ret_fast_syscall+0x0/0x2c)
Code: bf000094 bf0000b4 bf0000d4 e5952000 (e5923000)
Segmentation fault

2.1上面的回溯信息,表示了函数的整个调用过程

比如上面的回溯信息表示:

  • sys_open()->do_sys_open()->do_filp_open()->nameidata_to_filp()->chrdev_open()->first_drv_open();

最终错误出在了first_drv_open();

 若内核没有配置回溯信息显示,则就不会打印函数调用过程,可以修改内核的.config文件,添加:

//CONFIG_FRAME_POINTER,表示帧指针,用fp寄存器表示

内核里,就会通过fp寄存器记录函数的运行位置,并存到栈里,然后当出问题时,从栈里调出fp寄存器,查看函数的调用关系,就可以看到回溯信息.

(PS:若不配置,也可以直接通过栈来分析函数调用过程,在下章会分析到:http://www.cnblogs.com/lifexy/p/8011966.html)

2.2而有些内核的环境不同,opps也可能不会打印出上面的:

Modules linked in: 26th_segmentfault
PC is at first_drv_open+0x78/0x12c [26th_segmentfault]

这些相关信息, 只打印PC值,就根本无法知道,到底是驱动模块出的问题,还是内核自带的函数出的问题?

所以oops里的最重要内容还是这一段: pc : [<bf000078>]

2.3那么如何来确定,该PC值地址位于内核的函数,还是我们装载的驱动模块?

答:

可以在内核源码的根目录下通过的“vi System.map”来查看,该文件保存了内核里所有(符号、函数)的虚拟地址映射,比如下图的内核函数root_dev_setup():

通过vi命令的:0和:$命令行,可以看到内核的虚拟地址是c0004000~c03cebf4

所以,pc值bf000078为的驱动模块的地址值

2.4当有多个驱动装载时,又如何区分PC值是哪个驱动的函数的地址值?

答:通过/proc/kallsyms来查看:

#cat /proc/kallsyms  //(kernel all symbols)查看所有的内核标号(包括内核函数,装载的驱动函数,变量符号等)的地址值

或者:

#cat  /proc/kallsyms> /kallsyms.txt    //将地址值放入kallsyms.txt中

如下图所示,在kallsyms.txt里,找到pc值bf000078位于26th_segmentfault驱动里first_drv_open()函数下的bf000000+0x78中

2.5然后将驱动生成反汇编:

arm-linux-objdump -D 26th_segmentfault.ko >26th_segmentfault.dis //反汇编

2.6打开反汇编:

如下图所示,左边是kallsyms.txt,右边是26th_segmentfault.dis反汇编

显然pc值bf000078,就位于反汇编的78地址处:

Disassembly of section .text:         //.text段起始地址为0x00
<first_drv_open>: : e59fc0e8 ldr ip, [pc, #]; <.text+0x128> //ip=.text段+0x128里的内容
... ... : e585c000 str ip, [r5] //r5=.text段+0x128里的内容
... ... : e5952000 ldr r2, [r5] //r2=.text段+0x128里的内容
: e5923000 ldr r3, [r2] // r3=.text段+0x128里的内容
7c: e3c33c3f bic r3, r3, # ;0x3f00 //清除0x56000050的bit8~13
... ... : undefined //.text段+0x128里的内容=0x56000050

从上面看到,78地址处,主要是将0x56000050(r2)地址里的内容放入r3中.

0x56000050是个物理地址,在linux眼中便是个非法地址,所以出错

并找到出错地方位于first_drv_open ()函数下:

3.若发生错误的驱动位于内核的地址值时

3.1还是以26th_segmentfault.c为例,首先加入内核:

#cp 26th_segmentfault.c   /linux-2.6.22.6/drivers/char/  //将有问题的驱动复制到字符驱动目录下
#vi Makefile

添加:

obj-y    += 26th_segmentfault.o                            //y:将该驱动放入内核中

 

3.2然后make uImage装载新内核后,再运行测试程序,便会打印出opps信息

3.3在内核源码的根目录下通过:

# arm-none-linux-gnueabi-objdump -D vmlinux > vmlinux.dis

将整个内核反汇编, vmlinux:未压缩的内核

3.4 vi vmlinux.dis,然后通过oops信息的PC值直接来查找地址即可

接下来下章便通过信息来分析函数调用过程:http://www.cnblogs.com/lifexy/p/8011966.html

驱动调试-根据oops定位错误代码行的更多相关文章

  1. 36.Linux驱动调试-根据oops定位错误代码行

    1.当驱动有误时,比如,访问的内存地址是非法的,便会打印一大串的oops出来 1.1以LED驱动为例 将open()函数里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下图所示: 1.2 ...

  2. 驱动调试(三)oops确定函数PC

    目录 驱动调试(三)oops确定函数PC 什么是oops 流程简述 代码仓库 模块例子分析 找到PC值 判断是否属于模块 查看符号表 找到模块 反汇编模块 内核例子分析 找到PC值 判断是否属于模块 ...

  3. 驱动调试(四)oops确定调用树

    目录 驱动调试(四)oops确定调用树 内核开启调用树 栈指针分析 原理 寄存器别名 基础解释 例子分析 找到PC地址的位置 栈分析 附录:原文的excel title: 驱动调试(四)oops确定调 ...

  4. Linux驱动调试-根据oops的栈信息,确定函数调用过程

    上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的,那如何通过栈信息来查看出错函数的整个调用 ...

  5. 37.Linux驱动调试-根据oops的栈信息,确定函数调用过程

    上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的 本章便通过栈信息来分析函数调用过程 1. ...

  6. linux设备驱动第四篇:从如何定位oops的代码行谈驱动调试方法

    上一篇我们大概聊了如何写一个简单的字符设备驱动,我们不是神,写代码肯定会出现问题,我们需要在编写代码的过程中不断调试.在普通的c应用程序中,我们经常使用printf来输出信息,或者使用gdb来调试程序 ...

  7. linux设备驱动第四篇:驱动调试方法

    http://www.cnblogs.com/donghuizaixian/archive/2015/04/02/4387083.html 上一篇我们大概聊了如何写一个简单的字符设备驱动,我们不是神, ...

  8. 依据linux Oops信息准确定位错误代码所在行

    在linux下调tvp5150am1的过程中,遇到了一kernel oops,内容如下: [   66.714603] Unable to handle kernel paging request a ...

  9. linux驱动调试--修改系统时钟终端来定位僵死问题【转】

    本文转载自:http://blog.chinaunix.net/uid-20671208-id-4940381.html 原文地址:linux驱动调试--修改系统时钟终端来定位僵死问题 作者:枫露清愁 ...

随机推荐

  1. [ACdream]小晴天老师系列——竖式乘

    题目链接:http://acdream.info/contest?cid=1269#problem-C Problem Description 小晴天是ACdream团队中最牛的老师之一,他最擅长数学 ...

  2. swift之函数式编程(五)

    文章内容来源于<Functional Programing in Swift>,详情请看原著 The Value of Immutability swift 对于控制值改变有一些机制.在这 ...

  3. 使用gitbook

    前面的话 gitbook功能强大,可以自动实现搜索及翻页等功能,上手容易,用markdown书写即可,且可以自动生成响应式网站.本文将详细介绍如何使用gitbook 安装 1.使用npm全局安装git ...

  4. 树莓派链接WiFi设置

    树莓派摆脱网线的束缚 在看这篇文章之前,请确保自己树莓派OS已经正常安装且已经连接网线,然后准备一个无线网卡,开始实现我们的树莓派摆脱网线的束缚吧 ! -_- 一.    安装网卡驱动 1.      ...

  5. 2-SAT问题总结

    2-SAT问题总结 2-SAT问题:n个布尔型的变量,给出m个约束条件,约束条件例如:A,B不能同时为真,A,B必须同时为真等. 看了算法入门经典中的解决办法,关于这种解决办法比较容易理解,并且效率也 ...

  6. HDU 6143 Killer Names

    Killer Names Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  7. C# group 子句

    group 子句返回一个 IGrouping<TKey,TElement> 对象序列,这些对象包含零个或更多与该组的键值匹配的项. 例如,可以按照每个字符串中的第一个字母对字符串序列进行分 ...

  8. 数组删除操作 splice

    原理通过设置 函数的  length 属性 var  a = [1, 2, 3, 4]; a.length = 3 ; 结果  :   a  =  [1,2,3]

  9. 大家好,我是ZCDHJ

    大家好,我是ZCDHJ.CJ C2017级的一名Oier.

  10. OpenCASCADE BRepMesh - 2D Delaunay Triangulation

    OpenCASCADE BRepMesh - 2D Delaunay Triangulation eryar@163.com Abstract. OpenCASCADE package BRepMes ...