【扩展欧几里得】NOIP2012同余方程
题目描述
求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。
输入输出格式
输入格式:
输入只有一行,包含两个正整数 a, b,用一个空格隔开。
输出格式:
输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。
输入输出样例
说明
【数据范围】
对于 40%的数据,2 ≤b≤ 1,000;
对于 60%的数据,2 ≤b≤ 50,000,000;
对于 100%的数据,2 ≤a, b≤ 2,000,000,000。
NOIP 2012 提高组 第二天 第一题
题解
顺便把欧几里得算法也写上了
证明:
其实欧几里得算法就是辗转相除法。。。
扩展欧几里得就是
代码
//by 减维
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<map>
#include<bitset>
#include<algorithm>
#define ll long long
#define maxn
using namespace std; ll n,m; ll gcd(ll x,ll y)
{
return y?gcd(y,x%y):x;
} ll exgcd(ll a,ll b,ll &x,ll&y)
{
if(b==){
x=,y=;
return a;
}
ll q=exgcd(b,a%b,y,x);
y-=a/b*x;
return q;
} int main()
{
scanf("%lld%lld",&n,&m);
ll z=gcd(n,m);
n/=z,m/=z;
ll x,y;
ll asd=exgcd(n,m,x,y);
printf("%lld",(x+m)%m);
}
【扩展欧几里得】NOIP2012同余方程的更多相关文章
- 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 扩展欧几里得求解同余方程(poj 1061)
设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...
- EXGCD 扩展欧几里得
推荐:https://www.zybuluo.com/samzhang/note/541890 扩展欧几里得,就是求出来ax+by=gcd(x,y)的x,y 为什么有解? 根据裴蜀定理,存在u,v使得 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...
随机推荐
- 【Jquery系列】之DOM属性
1 概述 本章将结合JQuery官方API,对Jquery属性进行分析与讲解.主要讲.addClass(),.attr(),,hasClass(),,html(),.prop(),.removeA ...
- ASP.NET Core 中间件(Middleware)详解
什么是中间件(Middleware)? 中间件是组装到应用程序管道中以处理请求和响应的软件. 每个组件: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下一个组件之前和之后执行工作. 请 ...
- 使用Mkdocs构建你的项目文档
使用Mkdocs构建你的项目文档 环境搭建 安装必需软件 作者是在windows下安装的,如果是linux或mac用户,官网有更详细的安装说明. windows 10 x64 当然还有广大的windo ...
- java.util.ConcurrentModificationException异常排查
java.util.ConcurrentModificationException对于这个异常我们一般会认为是在遍历list的时候对这个list做了add,remove等修改操作造成的,最近在线上 ...
- python列表的操作
1.列表的增加: li=[] li.append("hha") print(li) li=[] li.append("hha") print(li) li.in ...
- .net WCF简单实例
最近看到网上招聘有许多都需要WCF技术的人员,我之前一直没接触过这个东西,以后工作中难免会遇到,所谓笨鸟先飞,于是我就一探究竟,便有了这边文章.由于是初学WCF没有深入研究其原理,只是写了一个demo ...
- linux根目录扩容
原来在ucloud上面买了一个服务器,结果根目录上面只有20G,/data挂载点下面有500G,没多久/根目录存储空间用完了,所以要扩展 linux的文件模式分为lvm模式和普通的非lvm模式,云服务 ...
- Intellij Idea配置MapReduce编程环境
原文参考地址:http://www点w2bc点com/article/229178 增加内容:question1: Hadoop2以上版本时,在Hadoop2的bin目录下没有winutils.exe ...
- 【ANT】taskdef class org.programmerplanet.ant.taskdefs.jmeter.JMeterTask cannot be found using the classloader AntClassLoader[]解决办法
把文件apache-jmeter-3.1\extras\ant-jmeter-1.1.1.jar复制到apache-ant-1.10.1\lib目录下即可.
- sqlserver 存储过程 带输出参数
CREATE PROCEDURE [dbo].[output] @acctNbr varchar(), --会员卡号 @acctPwd1 nvarchar() OUT, --登录密码 @acctPwd ...