Problem Description

The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.

 
Sample Input
Problem Description

The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.

 
Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output
216
30
 
Source
 
Sample Output
216
30
 
Source

Prim算法   促进理解了最小生成树的构建  找边

代码:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std; #define INF 0x3f3f3f3f;
int cost[][],mincost[],ans,cnt;
int n,m;
bool vis[]; void prim()
{
memset(vis,false,sizeof(vis));
memset(mincost,0x3f,sizeof(mincost));
ans=cnt=mincost[]=;
while(true){
m=;
for(int i=; i<=n; i++){
if(!vis[i] && mincost[i]<mincost[m])
m=i;
}
if(m==)
break;
vis[m]=true;
ans+=mincost[m];
for(int i=; i<=n; i++){
mincost[i]=min(mincost[i],cost[m][i]);
}
}
} int main()
{
int t,s1,s2;
char a[],b[];
while(~scanf("%d",&n),n){
memset(cost,0x3f,sizeof(cost));
for(int i=; i<n; i++){
scanf("%s %d",a,&t);
s1=a[]-'A'+;
for(int j=; j<t; j++){
scanf("%s%d",b,&s2);
cost[s1][b[]-'A'+]=cost[b[]-'A'+][s1]=s2;
}
}
prim();
printf("%d\n",ans);
}
}

hdu Jungle Roads(最小生成树)的更多相关文章

  1. hdu Constructing Roads (最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...

  2. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  3. HDU 1301Jungle Roads(最小生成树 prim,输入比较特殊)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1301 Jungle Roads Time Limit: 2000/1000 MS (Java/Oth ...

  4. hdu 1301 Jungle Roads 最小生成树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1301 The Head Elder of the tropical island of Lagrish ...

  5. hdu1301 Jungle Roads 最小生成树

    The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was s ...

  6. hduoj-1301 Jungle Roads(最小生成树-克鲁斯卡尔和普里姆求解)

    普里姆求解: #include<cstdio> #include<cmath> #include<cstring> #include<iostream> ...

  7. POJ 1251 && HDU 1301 Jungle Roads (最小生成树)

    Jungle Roads 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/A http://acm.hust.edu.cn/vju ...

  8. (最小生成树)Jungle Roads -- HDU --1301

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1301 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  9. POJ 1251 Jungle Roads(最小生成树)

    题意  有n个村子  输入n  然后n-1行先输入村子的序号和与该村子相连的村子数t  后面依次输入t组s和tt s为村子序号 tt为与当前村子的距离  求链接全部村子的最短路径 还是裸的最小生成树咯 ...

随机推荐

  1. Java Web整合开发(78) -- Struts 1

    在Struts1.3中已经取消了<data-sources>标签,也就是说只能在1.2版中配置,因为Apache不推荐在 struts-config.xml中配置数据源.所以建议不要在st ...

  2. A WPF/MVVM Countdown Timer

    Introduction This article describes the construction of a countdown timer application written in C# ...

  3. Scala---For语句段

    For语句段 语法: Expr1 ::= „for‟ („(‟ Enumerators „)‟ | „{‟ Enumerators „}‟) {nl} [„yield‟] Expr Enumerato ...

  4. CentOS配置smaba与Windows共享文件

    操作环境:CentOS 6.5 64bit Linux与Linux间通过什么共享文件呢--NFS,Windows与Windows之间呢--共享文件功能就OK了,那Windows与Linux之间呢? 这 ...

  5. ArcPad 10 的安装部署

    ArcPad是安装在手持设备或者移动终端的一个外业ArcGIS产品,也就是说ArcPad是Esri的一款软件产品,而不是硬件设备哦.尽管不比ArcGIS Desktop功能复杂缤纷,可是对于野外作业. ...

  6. 【JUnit4.10来源分析】6 Runner

    org.junit.runner.Runner它是JUnit作业引擎.它在许多类型的支持下的.处理试验和生产(Description).Failure和Result和其它输出. Runner参见图主类 ...

  7. MONGO DB windows 设备

    1,下载安装包 https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-3.0.0-signed.msi?_ga=1.22 ...

  8. Memcached全面剖析–5. memcached的应用和兼容程序

    作者:长野雅广(Masahiro Nagano)  原文链接:http://gihyo.jp/dev/feature/01/memcached/0005 我是Mixi的长野.memcached的连载最 ...

  9. 【C语言探索之旅】 开宗明义及第一课:什么是编程?

    内容简介 1.课程大纲 2.第一部分第一课:什么是编程? 3.第一部分第二课预告:工欲善其事,必先利其器 ​ 课程大纲 不知道为什么,一直对C语言有一种很深厚的“情怀”(类似老罗对锤子手机的那种),说 ...

  10. C++输出数据到txt

    平时总遇到将数据写到txt中的情况,尤其是在调试程序看中间结果时,所以将代码保存下来,方便以后应用: ofstream outfile; string InitialFileName("In ...