[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments
METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments
Satanjeev Banerjee Alon Lavie
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213
banerjee+@cs.cmu.edu alavie@cs.cmu.edu
Important Snippets:
1. In order to be both effective and useful, an automatic metric for MT evaluation has to satisfy several basic criteria. The primary and most intuitive requirement is that the metric have very high correlation with
quantified human notions of MT quality. Furthermore, a good metric should be as sensitive as possible to differences in MT quality between different systems, and between different versions of the same system. The metric should be
consistent (same MT system on similar texts should produce similar scores), reliable (MT systems that score similarly can be trusted to perform similarly) and general (applicable to different MT tasks in a wide range of domains and scenarios). Needless
to say, satisfying all of the above criteria is extremely difficult, and all of the metrics that have been proposed so far fall short of adequately addressing most if not all of these requirements.
2. It is based on an explicit word-to-word matching between the MT output being evaluated and one or more reference translations. Our current matching supports not only matching between words that are identical
in the two strings being compared, but can also match words that are simple morphological variants of each other
3. Each possible matching is scored based on a combination of several features. These currently include uni-gram-precision, uni-gram-recall, and a direct measure of how out-of-order the words of the MT output are with respect to
the reference.
4.Furthermore, our results demonstrated that recall plays a more important role than precision in obtaining high-levels of correlation with human judgments.
5.BLEU does not take recall into account directly.
6.BLEU does not use recall because the notion of recall is unclear when matching simultaneously against a set of reference translations (rather than a single reference). To compensate for recall, BLEU uses a Brevity
Penalty, which penalizes translations for being “too short”.
7.BLEU and NIST suffer from several weaknesses:
>The Lack of Recall
>Use of Higher Order N-grams
>Lack of Explicit Word-matching Between Translation and Reference
>Use of Geometric Averaging of N-grams
8.METEOR was designed to explicitly address the weaknesses in BLEU identified above. It evaluates a translation by computing a score based on explicit word-to-word matches between the translation and a reference
translation. If more than one reference translation is available, the given translation is scored against each reference independently, and the best score is reported.
9.Given a pair of translations to be compared (a system translation and a reference translation), METEOR creates an alignment between the two strings. We define an alignment as a mapping be-tween unigrams, such that
every unigram in each string maps to zero or one unigram in the other string, and to no unigrams in the same string.
10.This alignment is incrementally produced through a series of stages, each stage consisting of two distinct phases.
11.In the first phase an external module lists all the possible unigram mappings between the two strings.
12.Different modules map unigrams based on different criteria. The “exact” module maps two unigrams if they are exactly the same (e.g. “computers” maps to “computers” but not “computer”). The “porter stem”
module maps two unigrams if they are the same after they are stemmed using the Porter stemmer (e.g.: “com-puters” maps to both “computers” and to “com-puter”). The “WN synonymy” module maps two unigrams if they are synonyms of each
other.
13.In the second phase of each stage, the largest subset of these unigram mappings is selected such
that the resulting set constitutes an alignment as defined above
14. METEOR selects that set that has the least number of unigram mapping crosses.
15.By default the first stage uses the “exact” mapping module, the second the “porter stem” module and the third the “WN synonymy” module.
16. unigram precision (P)
unigram recall (R)
Fmean by combining the precision and recall via a harmonic-mean
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaWN0MjAxNA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
To take into account longer matches, METEOR computes a penalty for a given alignment as follows.
chunks such that the uni-grams in each chunk are in adjacent positions in the system translation, and are also mapped to uni-grams that are in adjacent positions in the reference translation.
Conclusion: METEOR prefer recall to precision while BLEU is converse.Meanwhile, it incorporates many information.
版权声明:本文博客原创文章,博客,未经同意,不得转载。
[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments的更多相关文章
- (zhuan) Recurrent Neural Network
Recurrent Neural Network 2016年07月01日 Deep learning Deep learning 字数:24235 this blog from: http:/ ...
- Paper Reading - Learning to Evaluate Image Captioning ( CVPR 2018 ) ★
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learnin ...
- 《30天学习30种新技术》-Day 15:Meteor —— 从零开始创建一个 Web 应用
目录:https://segmentfault.com/a/1190000000349384 原文: https://segmentfault.com/a/1190000000361440 到目前为止 ...
- 读书笔记——莫提默·J.艾德勒&查尔斯·范多伦(美)《如何阅读一本书》
第一篇 阅读的层次 第一章 阅读的活力与艺术 阅读的目标:娱乐.获得资讯.增进理解力这本书是为那些想把读书的主要目的当作是增进理解能力的人而写.何谓阅读艺术?这是一个凭借着头脑运作,除了玩味读物中的一 ...
- 如何阅读一本书——分析阅读Pre
如何阅读一本书--分析阅读Pre 前情介绍 作者: 莫提默.艾德勒 查尔斯.范多伦 初版:1940年,一出版就是全美畅销书榜首一年多.钢铁侠Elon.Musk学过. 需要注意的句子: 成功的阅读牵涉到 ...
- BLEU (Bilingual Evaluation Understudy)
什么是BLEU? BLEU (Bilingual Evaluation Understudy) is an algorithm for evaluating the quality of text w ...
- 机器翻译质量评测算法-BLEU
机器翻译领域常使用BLEU对翻译质量进行测试评测.我们可以先看wiki上对BLEU的定义. BLEU (Bilingual Evaluation Understudy) is an algorithm ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
随机推荐
- ubuntu14.04中virtualbox虚拟机无法启动
近期升级了ubuntu14.04,还是按之前的方法安装了virtualbox(guest系统仍然使用升级之前的镜像文件),可是在启动guest系统时,总是报错,提演示样例如以下: Kernel dri ...
- ThinkPHP中实例化对象M()和D()的区别,select和find的区别
原文:ThinkPHP中实例化对象M()和D()的区别,select和find的区别 1.ThinkPHP中实例化对象M()和D()的区别 在实例化的过程中,经常使用D方法和M方法,这两个方法的区别在 ...
- 数据结构——bitmap
近期在看<编程珠玑>这本书. 第1章中引入了bitmap(位图)的数据结构. 曾经没有接触过, 抽出时间研究了一下,记录下来. 书中描写叙述的情景: 1. 最多1000万个7位数电话号码( ...
- 2013 吉林通化邀请赛 Tutor 有点坑的水题
计算12个数的和的平均数.四舍五入,不能有后导0. 我的做法是,将答案算出后,乘以1000,然后看个位是否大于等于5,判断是否要进位…… #include<iostream> #inclu ...
- IE 加速插件之 Google Chrome Frame
前言 IE 8 及以下版本的速度较慢. 特别是前端的js 和 css 内容较多时尤为突出. 就笔者的开发经验来说GWT, Ext JS, raphael , draw2d 等开发的系统在IE下使用是相 ...
- shu_1241 邮局位置问题
http://202.121.199.212/JudgeOnline/problem.php?cid=1078&pid=5 分析: 由于题目中的距离是折线距离,所以能够分别考虑两个方向.又x方 ...
- 第一章. ActionScript 语言基础
第一章. ActionScript 语言基础 1.0. ActionScript 3.0 Cookbook 概述 1.1. 新建一个 ActionScript project 1.2. 自己定义应用程 ...
- redis优化配置和redis.conf说明
1. redis.conf 配置參数: #是否作为守护进程执行 daemonize yes #如以后台进程执行,则需指定一个pid,默觉得/var/run/redis.pid pidfile redi ...
- Burp Suite抓包、截包和改包
Burp Suite..呵呵.. 听说Burp Suite是能够监測.截取.改动我们訪问web应用的数据包,这么牛X? 条件:本地网络使用代理.由Burp Suite来代理.也就是说,每一个流出外网的 ...
- SWT中在treeview中显示图片
package com.repositoryclient.treeview; import org.eclipse.jface.resource.ImageDescriptor; import org ...