题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1338

1338: Pku1981 Circle and Points单位圆覆盖

Time Limit: 3 Sec  Memory Limit: 162 MB
Submit: 190  Solved: 79
[Submit][Status][Discuss]

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle. Fig 1. Circle and Points 平面上N个点,用一个半径R的圆去覆盖,最多能覆盖多少个点?

Input

The input consists of a series of data sets, followed by a single line only containing a single character '0', which indicates the end of the input. Each data set begins with a line containing an integer N, which indicates the number of points in the data set. It is followed by N lines describing the coordinates of the points. Each of the N lines has two decimal fractions X and Y, describing the x- and y-coordinates of a point, respectively. They are given with five digits after the decimal point. You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0 <= Y <= 10.0. No two points are closer than 0.0001. No two points in a data set are approximately at a distance of 2.0. More precisely, for any two points in a data set, the distance d between the two never satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a data set are simultaneously very close to a single circle of radius one. More precisely, let P1, P2, and P3 be any three points in a data set, and d1, d2, and d3 the distances from an arbitrarily selected point in the xy-plane to each of them respectively. Then it never simultaneously holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For each data set, print a single line containing the maximum number of points in the data set that can be simultaneously enclosed by a circle of radius one. No other characters including leading and trailing spaces should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

HINT

单位圆覆盖。

n^3算法:考虑覆盖最多的圆,一定有2个点在圆上,所以n^2枚举,o(n)计算覆盖多少点即可。

n^2logn算法:考虑以每个点为圆心做单位圆 ,当一段弧被另一圆覆盖时,表示在这个弧上的点做圆,可覆盖两个点。所以枚举一个点做圆心,再1~n枚举计算交弧的级角区间,sort一下,最大覆盖次数即为答案。

n^2logn代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define inf 2e9
#define maxn 305
#define pi acos(-1)
using namespace std;
int n,top,ans;
const double eps=1e-;
struct fuck{double x,y;}p[maxn];
struct fuckpp{double ang;int x;}a[maxn];
double dis(fuck x,fuck y){return sqrt((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y));}
double xl(fuck a,fuck b){
double ki=atan(fabs((b.y-a.y)/(b.x-a.x)));
if(b.y-a.y>){
if(b.x-a.x<)
ki=pi-ki;
}
else{
if(b.x<a.x) ki+=pi;
else ki=*pi-ki;
}
return ki;
}
bool comp(fuckpp x,fuckpp y){return x.ang<y.ang;}
int main(){
while(){
scanf("%d",&n);if(n==)break;
for(int i=;i<=n;i++)scanf("%lf %lf",&p[i].x,&p[i].y);
ans=;
for(int i=;i<=n;i++){
top=;
for(int j=;j<=n;j++){
if(i==j)continue;
double k=dis(p[i],p[j]);
if(k>2.0)continue;
double an=acos(k/2.0),ng=xl(p[i],p[j]);
a[++top].ang=ng-an;a[top].x=;
a[++top].ang=ng+an;a[top].x=-;
}
sort(a+,a+top+,comp);
int num=;
for(int i=;i<=top;i++){
num+=a[i].x;ans=max(ans,num);
}
}
printf("%d\n",ans);
}
return ;
}

bzoj1338: Pku1981 Circle and Points单位圆覆盖的更多相关文章

  1. poj1981 Circle and Points 单位圆覆盖问题

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Circle and Points Time Limit: 5000MS   Me ...

  2. POJ-1981 Circle and Points 单位圆覆盖

    题目链接:http://poj.org/problem?id=1981 容易想到直接枚举两个点,然后确定一个圆来枚举,算法复杂度O(n^3). 这题还有O(n^2*lg n)的算法.将每个点扩展为单位 ...

  3. poj1981Circle and Points(单位圆覆盖最多的点)

    链接 O(n^3)的做法: 枚举任意两点为弦的圆,然后再枚举其它点是否在圆内. 用到了两个函数 atan2反正切函数,据说可以很好的避免一些特殊情况 #include <iostream> ...

  4. poj 1981 Circle and Points

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8131   Accepted: 2899 ...

  5. poj1981 Circle and Points

    地址:http://poj.org/problem?id=1981 题目: Circle and Points Time Limit: 5000MS   Memory Limit: 30000K To ...

  6. poj 1981(单位圆覆盖最多点问题模板)

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 7327   Accepted: 2651 ...

  7. 【POJ 1981 】Circle and Points

    当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath ...

  8. hdu 1077(单位圆覆盖问题)

    Catching Fish Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  9. Codeforces 1036E Covered Points (线段覆盖的整点数)【计算几何】

    <题目链接> <转载于 >>>  > 题目大意: 在二维平面上给出n条不共线的线段(线段端点是整数),问这些线段总共覆盖到了多少个整数点. 解题分析: 用GC ...

随机推荐

  1. minSdkVersion与targetSdkVersion

    targetSdkVersion是Android提供向前兼容的主要依据,在应用的targetSdkVersion没有更新之前,系统不会应用最新的行为变化 比如设置了app的targetSdkVersi ...

  2. 【LeetCode】29. Divide Two Integers

    题意:不用乘除求余运算,计算除法,溢出返回INT_MAX. 首先考虑边界条件,什么条件下会产生溢出?只有一种情况,即返回值为INT_MAX+1的时候. 不用乘除求余怎么做? 一.利用减法. 耗时太长, ...

  3. 【锋利的Jquery】读书笔记六

    ajax优点缺点 json格式的严格 { "people": [ { "firstName": "Brett", "lastNam ...

  4. JavaEE XML DOM解析之DOM4J

    DOM解析之DOM4J @author ixenos DOM4J常用API 读取xml文档: Document doc = new SAXReader().read("xml文件" ...

  5. js导航栏样式变换

    <script type="text/javascript"> $(function(){ var lis = $(".submenu").chil ...

  6. hdu1722

    链接 一份切成q份需要q刀,切成p份需要p刀:切的部分总会有重复,即gcd(p,q),减去重复部分就是要切的刀数 #include<stdio.h> int gcd(int n,int m ...

  7. QTREE - Query on a tree

    QTREE - Query on a tree 题目链接:http://www.spoj.com/problems/QTREE/ 参考博客:http://blog.sina.com.cn/s/blog ...

  8. iOS SDWebImage的使用

    现在把代码贴出来,供大家参考.尤其是新手,看完这篇博客,图片缓存so easy.最后有demo供大家下载,先学习. 第一步,下载SDWebImage,导入工程.github托管地址https://gi ...

  9. [DP优化方法之斜率DP]

    什么是斜率dp呢 大概就把一些单调的分组问题 从O(N^2)降到O(N) 具体的话我就不多说了 看论文: http://www.cnblogs.com/ka200812/archive/2012/08 ...

  10. Openjudge-NOI题库-简单算术表达式求值

    题目描述 Description 两位正整数的简单算术运算(只考虑整数运算),算术运算为: +,加法运算:-,减法运算:*,乘法运算:/,整除运算:%,取余运算. 算术表达式的格式为(运算符前后可能有 ...