pandas 基础
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包
类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
Series
Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:
>>> s = Series([1,2,3.0,'abc'])
>>> s
0 1
1 2
2 3
3 abc
dtype: object
虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。
Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:
>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y'])
>>> s
a 1
b 3
x 5
y 7
dtype: int64
>>> s.index
Index(['a', 'b', 'x', 'y'], dtype='object')
>>> s.values
array([1, 3, 5, 7], dtype=int64)
Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。
注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。
Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。
另外,Series 对象和它的 index 都含有一个 name 属性:
>>> s.name = 'a_series'
>>> s.index.name = 'the_index'
>>> s
the_index
a 1
b 3
x 5
y 7
Name: a_series, dtype: int64
DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。
DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:
>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'],
        'year':[2000,2001,2002,2001,2002],
        'pop':[1.5,1.7,3.6,2.4,2.9]}
>>> df = DataFrame(data)
>>> df
   pop   state  year
0  1.5   Ohino  2000
1  1.7   Ohino  2001
2  3.6   Ohino  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
[5 rows x 3 columns]
虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。
较完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:
>>> df = DataFrame(data,index=['one','two','three','four','five'],
columns=['year','state','pop','debt'])
>>> df
year state pop debt
one 2000 Ohino 1.5 NaN
two 2001 Ohino 1.7 NaN
three 2002 Ohino 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN [5 rows x 4 columns]
同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:
>>> df.index
Index(['one', 'two', 'three', 'four', 'five'], dtype='object')
>>> df.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')
>>> type(df['debt'])
<class 'pandas.core.series.Series'>
DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。
对象属性
重新索引
Series 对象的重新索引通过其 .reindex(index=None,**kwargs) 方法实现。**kwargs 中常用的参数有俩:method=None,fill_value=np.NaN:
ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])
>>> a = ['a','b','c','d','e']
>>> ser.reindex(a)
a -5.3
b 7.2
c 3.6
d 4.5
e NaN
dtype: float64
>>> ser.reindex(a,fill_value=0)
a -5.3
b 7.2
c 3.6
d 4.5
e 0.0
dtype: float64
>>> ser.reindex(a,method='ffill')
a -5.3
b 7.2
c 3.6
d 4.5
e 4.5
dtype: float64
>>> ser.reindex(a,fill_value=0,method='ffill')
a -5.3
b 7.2
c 3.6
d 4.5
e 4.5
dtype: float64
.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None}参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)
DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method 参数只能应用于行,即轴 0。
>>> state = ['Texas','Utha','California']
>>> df.reindex(columns=state,method='ffill')
Texas Utha California
a 1 NaN 2
c 4 NaN 5
d 7 NaN 8 [3 rows x 3 columns]
>>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill')
Texas Utha California
a 1 NaN 2
b 1 NaN 2
c 4 NaN 5
d 7 NaN 8 [4 rows x 3 columns]
不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过df.T.reindex(index,method='**').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用 index=['a','b','d','c'] 的话就不行。
删除指定轴上的项
即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:
>>> ser
d 4.5
b 7.2
a -5.3
c 3.6
dtype: float64
>>> df
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8 [3 rows x 3 columns]
>>> ser.drop('c')
d 4.5
b 7.2
a -5.3
dtype: float64
>>> df.drop('a')
Ohio Texas California
c 3 4 5
d 6 7 8 [2 rows x 3 columns]
>>> df.drop(['Ohio','Texas'],axis=1)
California
a 2
c 5
d 8 [3 rows x 1 columns]
.drop() 返回的是一个新对象,元对象不会被改变。
索引和切片
就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。
不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。
>>> foo
a 4.5
b 7.2
c -5.3
d 3.6
dtype: float64
>>> bar
0 4.5
1 7.2
2 -5.3
3 3.6
dtype: float64
>>> foo[:2]
a 4.5
b 7.2
dtype: float64
>>> bar[:2]
0 4.5
1 7.2
dtype: float64
>>> foo[:'c']
a 4.5
b 7.2
c -5.3
dtype: float64
这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c' 这样的字符串索引时,结果就包含了这个边界元素。
另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。
可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:
>>> df
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8 [3 rows x 3 columns]
>>> df.ix[:2,:2]
Ohio Texas
a 0 1
c 3 4 [2 rows x 2 columns]
>>> df.ix['a','Ohio']
0
而不使用 ix ,直接切的情况就特殊了:
- 索引时,选取的是列
- 切片时,选取的是行
这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。
>>> df['Ohio']
a 0
c 3
d 6
Name: Ohio, dtype: int32
>>> df[:'c']
Ohio Texas California
a 0 1 2
c 3 4 5 [2 rows x 3 columns]
>>> df[:2]
Ohio Texas California
a 0 1 2
c 3 4 5 [2 rows x 3 columns]
使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):
>>> df['Texas']>=4
a False
c True
d True
Name: Texas, dtype: bool
>>> df[df['Texas']>=4]
Ohio Texas California
c 3 4 5
d 6 7 8 [2 rows x 3 columns]
>>> df.ix[:,df.ix['c']>=4]
Texas California
a 1 2
c 4 5
d 7 8 [3 rows x 2 columns]
算术运算和数据对齐
pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。
>>> foo = Series({'a':1,'b':2})
>>> foo
a    1
b    2
dtype: int64
>>> bar = Series({'b':3,'d':4})
>>> bar
b    3
d    4
dtype: int64
>>> foo + bar
a   NaN
b     5
d   NaN
dtype: float64
DataFrame 的对齐操作会同时发生在行和列上。
当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()。
Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。
函数应用和映射
Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。
当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。
f = lambda x:x.max()-x.min()
>>> df
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8 [3 rows x 3 columns]
>>> df.apply(f)
Ohio 6
Texas 6
California 6
dtype: int64
>>> df.apply(f,axis=1)
a 2
c 2
d 2
dtype: int64
排序和排名
Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。
若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。
在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)列进行排序(不能对行使用 by 参数):
>>> df.sort_index(by='Ohio')
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8 [3 rows x 3 columns]
>>> df.sort_index(by=['California','Texas'])
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8 [3 rows x 3 columns]
>>> df.sort_index(axis=1)
California Ohio Texas
a 2 0 1
c 5 3 4
d 8 6 7 [3 rows x 3 columns]
排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first。
>>> ser=Series([3,2,0,3],index=list('abcd'))
>>> ser
a    3
b    2
c    0
d    3
dtype: int64
>>> ser.rank()
a    3.5
b    2.0
c    1.0
d    3.5
dtype: float64
>>> ser.rank(method='min')
a    3
b    2
c    1
d    3
dtype: float64
>>> ser.rank(method='max')
a    4
b    2
c    1
d    4
dtype: float64
>>> ser.rank(method='first')
a    3
b    2
c    1
d    4
dtype: float64
注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。
DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。
统计方法
pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。
比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:
>>> df
one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3 [4 rows x 2 columns]
>>> df.mean()
one 3.083333
two -2.900000
dtype: float64
>>> df.mean(axis=1)
a 1.400
b 1.300
c NaN
d -0.275
dtype: float64
>>> df.mean(axis=1,skipna=False)
a NaN
b 1.300
c NaN
d -0.275
dtype: float64
其他常用的统计方法有:
| ######################## | ****************************************** | 
| count | 非 NA 值的数量 | 
| describe | 针对 Series 或 DF 的列计算汇总统计 | 
| min , max | 最小值和最大值 | 
| argmin , argmax | 最小值和最大值的索引位置(整数) | 
| idxmin , idxmax | 最小值和最大值的索引值 | 
| quantile | 样本分位数(0 到 1) | 
| sum | 求和 | 
| mean | 均值 | 
| median | 中位数 | 
| mad | 根据均值计算平均绝对离差 | 
| var | 方差 | 
| std | 标准差 | 
| skew | 样本值的偏度(三阶矩) | 
| kurt | 样本值的峰度(四阶矩) | 
| cumsum | 样本值的累计和 | 
| cummin , cummax | 样本值的累计最大值和累计最小值 | 
| cumprod | 样本值的累计积 | 
| diff | 计算一阶差分(对时间序列很有用) | 
| pct_change | 计算百分数变化 | 
处理缺失数据
pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。
处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。
is(not)null
这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。
dropna
对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。
问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。
fillna
fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。
inplace 参数
前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。
转自文章:http://www.open-open.com/lib/view/open1402477162868.html
pandas 基础的更多相关文章
- 利用Python进行数据分析(12) pandas基础: 数据合并
		pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ... 
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
		pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ... 
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
		一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ... 
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
		一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ... 
- Pandas基础学习与Spark Python初探
		摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ... 
- numpy&pandas基础
		numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ... 
- Pandas 基础(1) - 初识及安装 yupyter
		Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ... 
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
		在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ... 
- python学习笔记(四):pandas基础
		pandas 基础 serise import pandas as pd from pandas import Series, DataFrame obj = Series([4, -7, 5, 3] ... 
- 数据分析02 /pandas基础
		数据分析02 /pandas基础 目录 数据分析02 /pandas基础 1. pandas简介 2. Series 3. DataFrame 4. 总结: 1. pandas简介 numpy能够帮助 ... 
随机推荐
- qq客服问题
			angularJs会给ng-href的不正常跳转,会 添加unsafe的前缀.原因是angular对href是有安全检查的,只能生成它认为安全的链接.解决方法如下: 在config.js中注入 fun ... 
- js跨域访问,No ‘Access-Control-Allow-Origin‘ header is present on
			在本地用ajax跨域访问请求时报错: XMLHttpRequest cannot loadhttp://www.zjblogs.com/. No 'Access-Control-Allow-Origi ... 
- Qt学习
			博客 一去丶二三里的博客 http://blog.sina.com.cn/s/articlelist_2801495241_0_4.html 
- Inno Setup入门(十九)——Inno Setup类参考(5)
			: Install Setup 2013-02-02 11:29 377人阅读 评论(0) 收藏 举报 单选按钮 单选按钮在安装中也很常见,例如同一个程序可以选择安装不同的性质的功能,例如选择32位或 ... 
- Shell script fails: Syntax error: “(” unexpected
			Shell script fails: Syntax error: “(” unexpected google 一下. http://unix.stackexchange.com/questions/ ... 
- asp:cookies的属性
			Expires – 过期时间.指定cookie的生命期.具体是值是过期日期.如果想让cookie的存在期限超过当前浏览器会话时间,就必须使用这个属性.当过了到期日期时,浏览器就可以删除cookie文件 ... 
- WordPress 邮箱防抓取
			现在网络上有很多爬虫,专门四处搜集网站代码中出现的邮箱,搜集到了之后就批量出售或者发送垃圾邮件.很多人都把邮箱中的 “@” 换成 “#”,但这样对用户不太方便,而且这种方法很多机器人都可以识破,同样被 ... 
- Tinyxml封装类COperatorXml
			OperatorXml.h头文件 #ifndef _OPERATOR_XML_H_ #define _OPERATOR_XML_H_ #include <string> class TiX ... 
- MyBaits 错误分析
			错误原因:在DAO的映射文件中,在映射标签中的type类型写成DAO类了,应该写成javaBean 
- 拓扑排序<反向拓扑+有向环的判断>
			题目链接 #include <set> #include <map> #include <cmath> #include <queue> #includ ... 
