Radar



Problem Description
N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a
radius of R. Our goal is to minimize R while covering the entire city with no more than K radars.
 
Input
The input consists of several test cases. The first line of the input consists of an integer T, indicating the number of test cases. The first line of each test case consists of 3 integers: N, M, K, representing the number of cities,
the number of radar stations and the number of operators. Each of the following N lines consists of the coordinate of a city.

Each of the last M lines consists of the coordinate of a radar station.



All coordinates are separated by one space.

Technical Specification



1. 1 ≤ T ≤ 20

2. 1 ≤ N, M ≤ 50

3. 1 ≤ K ≤ M

4. 0 ≤ X, Y ≤ 1000
 
Output
For each test case, output the radius on a single line, rounded to six fractional digits.
 
Sample Input
1
3 3 2
3 4
3 1
5 4
1 1
2 2
3 3
 
Sample Output
2.236068
 
Source

解题思路:

题意为有m个雷达,每一个雷达的覆盖范围都为以r为半径的圆,给定他们的坐标,有n个城市。给定他们的坐标,求最小的r,使得每一个城市都被雷达覆盖。限制条件为最多仅仅有k个雷达工作。

二分答案r。推断所须要的雷达数是否小于给定的k,找到最小的r。

用Dlx反复覆盖来推断。首先建图:m行,n列的矩形,也就是横坐标代表雷达。纵坐标代表城市,假设雷达与城市之间的距离小于等于当前的r,则坐标处标记为1。否则为0,这样就转化为了01矩阵,也就是解决这个问题能不能在这个矩阵中找出一些行(行数小于等于k),使得这些行组成的新矩阵,每列都至少有一个1(反复覆盖。每列能够有多个1).

注意maxnode的范围 ,最大不能仅仅是 n*m, 列头结点还得加上 即  n*m+m

关于精确覆盖和反复覆盖,以下转载于:http://www.cnblogs.com/jh818012/p/3252154.html

精确覆盖:

首先选择当前要覆盖的列(含1最少的列)。将该列和可以覆盖到该列的行所有去掉,再枚举加入的方法。

枚举某一行r,如果它是解集中的一个,那么该行所能覆盖到的全部列都不必再搜,所以删除该行覆盖到的全部列,又因为去掉的列相当于有解,所以可以覆盖到这些列的行也不用再搜,删之。

反复覆盖:

首先选择当前要覆盖的列(同上),将该列删除,枚举覆盖到该列的全部行:对于某一行r,如果它是解集中的一个。那么该行所能覆盖到的列都不必再搜。所以删除该行覆盖到的全部列。

注意此时不用删去覆盖到这些列的行,由于一列中同意有多个1。

这里有一个A*的优化:估价函数h意义为从当前状态最好情况下须要加入几条边才干覆盖。

代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int maxn=52;
const int maxm=52;
const int maxnode=3020;
int n,m,k; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[maxn],S[maxn];
int ansd,ans[maxn]; void init(int _n,int _m)
{
n=_n;
m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[m]=0,L[0]=m;
size=m;
for(int i=1;i<=n;i++)
H[i]=-1;
} void link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)
H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
} void remove(int c)
{
for(int i=D[c];i!=c;i=D[i])
L[R[i]]=L[i],R[L[i]]=R[i];
} void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
L[R[i]]=R[L[i]]=i;
} bool v[maxnode]; int f()//精确覆盖区估算剪枝
{
int ret=0;
for(int c=R[0];c!=0;c=R[c])
v[c]=true;
for(int c=R[0];c!=0;c=R[c])
if(v[c])
{
ret++;
v[c]=false;
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
v[Col[j]]=false;
}
return ret;
} bool dance(int d)
{
if(d+f()>k)
return false;
if(d>k)
return false;
if(R[0]==0)
return true;
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c])
c=i;
for(int i=D[c];i!=c;i=D[i])
{
remove(i);
for(int j=R[i];j!=i;j=R[j])
remove(j);
if(dance(d+1)) return true;
for(int j=L[i];j!=i;j=L[j])
resume(j);
resume(i);
}
return false;
}
}; DLX g;
const double eps=1e-8; struct point
{
double x,y;
}city[maxm],radar[maxn]; double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&m,&n,&k);
for(int i=1;i<=m;i++)
scanf("%lf%lf",&city[i].x,&city[i].y);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&radar[i].x,&radar[i].y);
double l=0,r=1e5;
while(r-l>=eps)
{
double mid=(l+r)/2.0;
g.init(n,m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(dis(radar[i],city[j])<mid-eps)
g.link(i,j);
if(g.dance(0))
r=mid-eps;
else
l=mid+eps;
}
printf("%.6lf\n",l);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

[ACM] HDU 2295 Radar (二分法+DLX 重复覆盖)的更多相关文章

  1. HDU 2295 Radar dancing links 重复覆盖

    就是dancing links 求最小支配集,重复覆盖 精确覆盖时:每次缓存数据的时候,既删除行又删除列(这里的删除列,只是删除表头) 重复覆盖的时候:只删除列,因为可以重复覆盖 然后重复覆盖有一个估 ...

  2. HDU 5046 Airport【DLX重复覆盖】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意: 给定n个城市的坐标,要在城市中建k个飞机场,使城市距离最近的飞机场的最长距离最小,求这 ...

  3. HDU 3335 Divisibility dancing links 重复覆盖

    分析: dlx重复覆盖的巧用,重复覆盖的原理恰好符合本题的筛选方式,即选择一个数后,该数的倍数或约数可以保证在之后的搜索中不会被选择 于是修改一下启发函数,求解最大的重复覆盖即可.   其实不一定不被 ...

  4. HDU 2295.Radar (DLX重复覆盖)

    2分答案+DLX判断可行 不使用的估计函数的可重复覆盖的搜索树将十分庞大 #include <iostream> #include <cstring> #include < ...

  5. HDU 2295 Radar 重复覆盖 DLX

    题意: N个城市,M个雷达站,K个操作员,问雷达的半径至少为多大,才能覆盖所有城市.M个雷达中最多只能有K个同时工作. 思路: 二分雷达的半径,看每个雷达可以覆盖哪些城市,然后做重复覆盖,判断这个半径 ...

  6. HDU 2295 Radar (重复覆盖)

    Radar Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )

    以下转自 这里 : 最小支配集问题:二分枚举最小距离,判断可行性.可行性即重复覆盖模型,DLX解之. A*的启发函数: 对当前矩阵来说,选择一个未被控制的列,很明显该列最少需要1个行来控制,所以ans ...

  8. hdu 2295 dlx重复覆盖+二分答案

    题目大意: 有一堆雷达工作站,安放至多k个人在这些工作站中,找到一个最小的雷达监控半径可以使k个工作人所在的雷达工作站覆盖所有城市 二分半径的答案,每次利用dlx的重复覆盖来判断这个答案是否正确 #i ...

  9. (中等) HDU 3335 , DLX+重复覆盖。

    Description As we know,the fzu AekdyCoin is famous of math,especially in the field of number theory. ...

随机推荐

  1. java 对map排序

    public static Map<String, String> sortMapByKey(Map<String, String> map) { if (map == nul ...

  2. Win 10开门人类智慧的世界领先

    3月18日,从微软硬件project大会(WinHEC 2015)上传来好消息:今年夏天,Win 10将要正式公布.Win 10公布,有何新意? 微软新领导人纳德拉(Nadella)主张:运计算,大数 ...

  3. JDBC批处理executeBatch

    JDBC运行SQL声明,有两个处理接口,一PreparedStatement,Statement,一般程序JDBC有多少仍然比较PreparedStatement 只要运行批处理,PreparedSt ...

  4. JavaScript动态更改页面元素

    通过JavaScript动态变化HTML元素 至HTML加元 首先需要创建一个标签,然后添加到标签中的相应的内容.然后创建添加到相应的位置好标签. <!DOCTYPE html PUBLIC & ...

  5. 边记边学PHP-(十五)MySQL数据库基础操作2

    四.使用可视化工具创建数据库 尽管使用命令行感觉更像我们程序猿,可是我还是比較喜欢使用workbench来创建数据库. 首先打开workbench , 一个比較友好的界面就打开了,哈哈.我还是比較喜欢 ...

  6. Threejs 它可以在建立其内部房间效果可见

    Threejs 中建立可看到其内部的房间效果 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作公用协 ...

  7. ios pop 折叠动画

    今天写了一个很有趣的电影太,我们可以去githoub下载. 这部动画是高级写作,我参考了它.而凝视,我希望你能看的懂. 各种动画.事实上,一些不起眼的开始.我也只是摸索. 我希望有更多的交流.[   ...

  8. WPF设置VistualBrush的Visual属性制作图片放大镜效果

    原文:WPF设置VistualBrush的Visual属性制作图片放大镜效果 效果图片:原理:设置VistualBrush的Visual属性,利用它的Viewbox属性进行缩放. XAML代码:// ...

  9. ListView的cacheColorHint与listSelector物业和fragment里面onActivityResult问题没有响应

    fragment里面onActivityResult 如何才华被称之为.在使用时发现没反应,没注意这个问题谁. 多方法都不是非常方便.最终实验除了一个最简单的方法. startActivityForR ...

  10. WebLogic部署集群和代理服务器

    应公司要求,最近在学习weblogic集群这块的知识,下面我把我这几天学到的,以及过程中遇到的问题及如何解决的,分享给大家.首先,weblogic是Orcale公司的一款产品,至于其作用,我想就不用我 ...