Fast Food

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 2173    Accepted Submission(s): 930

Problem Description
The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed
ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.



To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter,
which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.



The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as




must be as small as possible.



Write a program that computes the positions of the k depots, such that the total distance sum is minimized.
 
Input
The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing
one integer each, giving the positions di of the restaurants, ordered increasingly.



The input file will end with a case starting with n = k = 0. This case should not be processed.
 
Output
For each chain, first output the number of the chain. Then output a line containing the total distance sum.



Output a blank line after each test case.
 
Sample Input
6 3
5
6
12
19
20
27
0 0
 
Sample Output
Chain 1
Total distance sum = 8
 
Source

解题思路:

题意为 一条路上有 n个商店,每一个商店有一个x坐标位置,有k个仓库,要把k个仓库安放在n个位置中的k个上面,每一个商店都向近期的仓库来获得补给,求怎么安放这k个仓库,使得每一个商店到相应仓库的距离仅仅和加起来最小,输出最小值。

解决本题要意识到两点:

1. 假设要在第i个位置和第j个位置之间安放仓库,那么要把它安放在  (i+j)/2 个位置上,(i+j)/2为整数, 才干保证从i到j个商店到仓库之间的距离之和最短。

2.假设依照题意把k个仓库安放在n个位置上,使得距离和最短,这样求得了最小值, 那么一定符合题意:每一个商店都向近期的仓库来获得补给,由于假设不是向近期的,距离和肯定不是最短

用dp[i][j] 代表 前j个商店,有i个仓库

那么状态转移方程为:

dp [ i  ]  [ j ] = min ( dp [ i ] [ j ] ,   dp  [ i-1 ]  [ k]  + cost [ k+1 ]  [ j ] )   i-1<=k<=j-1

dp[i][j] 要从前一个状态推出来,及前k个商店有i-1个仓库,k是不确定的,但能够确定它的范围,最小是i-1 (一个商店位置上放一个仓库),最大是j-1 ( 把第i个仓库放在第j个位置上) ,    cost [ i ] [ j ]为在i ,j之间放一个仓库的最小距离和,即前面提到的第1点。

代码:

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cmath>
#include <string.h>
using namespace std;
int n,k;
int dp[32][210];//dp[i][j]前j个商店有i个仓库
int dis[210];
const int inf=0x3f3f3f3f; int cost(int i,int j)
{
int ans=0;
int mid=dis[(i+j)/2];
for(int k=i;k<=j;k++)
ans+=abs(dis[k]-mid);
return ans;
} int main()
{
int c=1;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(!n||!k)
break;
for(int i=1;i<=n;i++)
scanf("%d",&dis[i]);
memset(dp,inf,sizeof(dp));
for(int i=1;i<=n;i++)
dp[1][i]=cost(1,i);
for(int i=2;i<=k;i++)//第i个仓库
for(int j=1;j<=n;j++)//前j个商店
{
for(int k=i-1;k<=j-1;k++)
dp[i][j]=min(dp[i][j],dp[i-1][k]+cost(k+1,j));
} printf("Chain %d\n",c++);
printf("Total distance sum = %d\n",dp[k][n]);
printf("\n");
}
return 0;
}

[ACM] HDU 1227 Fast Food (经典Dp)的更多相关文章

  1. hdu 1227 Fast Food(DP)

    题意: X轴上有N个餐馆.位置分别是D[1]...D[N]. 有K个食物储存点.每一个食物储存点必须和某个餐厅是同一个位置. 计算SUM(Di-(离第i个餐厅最近的储存点位置))的最小值. 1 < ...

  2. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  3. HDU 1227 Fast Food

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1227 题意:一维坐标上有n个点,位置已知,选出k(k <= n)个点,使得所有n个点与选定的点中 ...

  4. HDU 1227 Fast Food (DP)

    题目链接 题意 : 有n个饭店,要求建k个供应点,要求每个供应点一定要建造在某个饭店的位置上,然后饭店都到最近的供应点拿货,求出所有饭店到最近的供应点的最短距离. 思路 : 一开始没看出来是DP,后来 ...

  5. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  6. [ACM] hdu 5045 Contest (减少国家Dp)

    Contest Problem Description In the ACM International Collegiate Programming Contest, each team consi ...

  7. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  8. HDU 2859 Phalanx(对称矩阵 经典dp样例)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2859 Phalanx Time Limit: 10000/5000 MS (Java/Others)  ...

  9. HDU 4616 Game(经典树形dp+最大权值和链)

    http://acm.hdu.edu.cn/showproblem.php?pid=4616 题意:给出一棵树,每个顶点有权值,还有存在陷阱,现在从任意一个顶点出发,并且每个顶点只能经过一次,如果经过 ...

随机推荐

  1. PPTP和L2TP的区别

    PPTP是点到点的隧道协议,服务器端使用TCP 的1723端口,同时使用GRE协议,加密上使用MPPE.位于NAT后的客户端连接会有问题. L2TP是二层隧道VPN,使用IPsec 进行加密,服务器端 ...

  2. Python的Tkinter去除边框

    from Tkinter import * class Application(Frame): def __init__(self,master=None, *args, **kwargs): Fra ...

  3. poj2378(树的dfs)

    题目链接:http://poj.org/problem?id=2378 题意:给一个树状图,有n个点.求出,去掉哪个点,使得剩下的每个连通子图中点的数量不超过n/2. 分析:num[u]表示以u为根节 ...

  4. 京东商城招聘scala 高级开发工程师 T3级别

    岗位级别:T3 岗位职责: 1.参与自动调价.匹配系统的设计和实现 岗位要求: 1. 一年以上scala开发经验2.良好的函数式编程能力3. JAVA基础扎实4.熟悉大数据处理,有hadoop/hba ...

  5. poj 3265 Problem Solving dp

    这个题目容易让人误以为是贪心就可以解决了,但是细想一下很容易举出反例. dp[i][j]表示解决了i个问题,最后一个月解决的问题数目. #include <iostream> #inclu ...

  6. const void *a 与 void *const a 的差别

    const void *a 这是定义了一个指针a,a能够指向随意类型的值,但它指向的值必须是常量. 在这样的情况下,我们不能改动被指向的对象,但能够使指针指向其它对象. 比如: const void ...

  7. Linux内核——进程管理与调度

    进程的管理与调度 进程管理 进程描写叙述符及任务结构 进程存放在叫做任务队列(tasklist)的双向循环链表中.链表中的每一项包括一个详细进程的全部信息,类型为task_struct,称为进程描写叙 ...

  8. jar包有嵌套的jar的打包成jar的方法

    1.先写一个类,将其打包成jar包. 代码如下: package com.wjy.jar; public class GetUserName { public String getUserName() ...

  9. HttpClient 网络优化

    HttpClient 网络优化 尽管Android官网推荐在2.3及后续版本中使用HttpURLConnection作为网络开发首选类,但在连接管理和线程安全方面,HttpClient还是具有很大优势 ...

  10. 【剑指offer】面试题35:第一个数字只出现一次

    def FirstNotRepeatingChar(string): hashStr = [0] * 256 for c in string: hashStr[ord(c)] += 1 for c i ...