Mapperreduce的wordCount原理
wordcount原理:
1.mapper(Object key,Object value ,Context contex)阶段
2.从数据源读取一行数据传递给mapper函数的value
3.处理数据并将处理结果输出到reduce中去
String line = value.toString();
String[] words = line.split(" ");
context.write(word,1)
4.reduce(Object key ,List<value> values ,Context context)阶段
遍历values累加技术结果,并将数据输出
context.write(word,1)

代码示例:
Mapper类:
package com.hadoop.mr; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* Mapper <Long, String, String, Long>
* Mapper<LongWritable, Text, Text, LongWritable>//hadoop对上边的数据类型进行了封装
* LongWritable(Long):偏移量
* Text(String):输入数据的数据类型
* Text(String):输出数据的key的数据类型
* LongWritable(Long):输出数据的key的数据类型
* @author shiwen
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//1.读取一行
String line = value.toString();
//2.分割单词
String[] words = line.split(" ");
//3.统计单词
for(String word : words){
//4.输出统计
context.write(new Text(word), new LongWritable(1));
}
}
}
reduce类
package com.hadoop.mr; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReduce extends Reducer<Text, LongWritable, Text, LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException { long count = 0;
//1.遍历vlues统计数据
for(LongWritable value : values){
count += value.get();
}
//输出统计
context.write(key, new LongWritable(count)); } }
运行类:
package com.hadoop.mr; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import com.sun.jersey.core.impl.provider.entity.XMLJAXBElementProvider.Text; public class WordCountRunner {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.创建配置对象
Configuration config = new Configuration();
//2.Job对象
Job job = new Job(config); //3.设置mapperreduce所在的jar包
job.setJarByClass(WordCountRunner.class); //4.设置mapper的类
job.setMapOutputKeyClass(WordCountMapper.class);
//5.设置reduce的类
job.setReducerClass(WordCountReduce.class); //6.设置reduce输入的key的数据类型
job.setOutputKeyClass(Text.class);
//7.设置reduce输出的value的数据类型
job.setOutputValueClass(LongWritable.class); //8.设置输入的文件位置
FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.1.10:9000/input"));
//9.设置输出的文件位置
FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.1.10:9000/input")); //10.将任务提交给集群
job.waitForCompletion(true); } }
Mapperreduce的wordCount原理的更多相关文章
- Hive实现WordCount详解
一.WordCount原理 初学MapReduce编程,WordCount作为入门经典,类似于初学编程时的Hello World.WordCount的逻辑就是给定一个/多个文本,统计出文本中每次单词/ ...
- 4、wordcount程序原理剖析及Spark架构原理
一.wordcount程序原理深度剖析 二.Spark架构原理 1.
- MapReduce本地运行模式wordcount实例(附:MapReduce原理简析)
1. 环境配置 a) 配置系统环境变量HADOOP_HOME b) 把hadoop.dll文件放到c:/windows/System32目录下 c) ...
- Hadoop WordCount单词计数原理
计算文件中出现每个单词的频数 输入结果按照字母顺序进行排序 编写WordCount.java 包含Mapper类和Reducer类 编译WordCount.java javac -classpath ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- hadoop运行原理之Job运行(二) Job提交及初始化
本篇主要介绍Job从客户端提交到JobTracker及其被初始化的过程. 以WordCount为例,以前的程序都是通过JobClient.runJob()方法来提交Job,但是现在大多用Job.wai ...
- MapReduce编程job概念原理
在Hadoop中,每个MapReduce任务都被初始化为一个job,每个job又可分为两个阶段:map阶段和reduce阶段.这两个阶段分别用两个函数来表示.Map函数接收一个<key,valu ...
- JStorm第一个程序WordCount详解
一.Strom基本知识(回顾) 1,首先明确Storm各个组件的作用,包括Nimbus,Supervisor,Spout,Bolt,Task,Worker,Tuple nimbus是整个storm任务 ...
- 开源分布式实时计算引擎 Iveely Computing 之 WordCount 详解(3)
WordCount是很多分布式计算中,最常用的例子,例如Hadoop.Storm,Iveely Computing也不例外.明白了WordCount在Iveely Computing上的运行原理,就很 ...
随机推荐
- 树莓派Raspberry Pi zero w无线联网实测
第一次学习树莓派,使用的是Raspberry Pi zero w的型号. 刚开始,就只有一块板子!!!这要怎么开发啊 经过网上查阅资料,发现可以通过WiFi连接PC端实现开发测试 准备材料:一根USB ...
- ALGO-31_蓝桥杯_算法训练_开心的金明(DP)
问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎 么布置,你说了算,只要不超过N元钱就行”.今 ...
- 【HTTP】使用 RestTemplete 实现 post请求
如上图,要求: post请求; x-www-form-urlencoded 类型; 如下代码没有进行整理,但是测试OK package com.chinamobile.epic.http; impor ...
- Ubuntu 14.10 下HBase错误集
1 如果机群时间不同步,那么启动子节点RegionServer就会出问题 aused by: org.apache.hadoop.hbase.ipc.RemoteWithExtrasException ...
- Null hypothesis TypeⅠerror Type Ⅱ error
Null hypothesis usually express the phenomenon of no effect or no difference. TypeⅠerror is the inco ...
- Flume的Channel
一.Memory Channel 事件将被存储在内存中(指定大小的队列里) 非常适合那些需要高吞吐量且允许数据丢失的场景下 属性说明: 二.JDBC Channel 事件会被持久化(存储)到可靠的数据 ...
- shell 发送所有内容到会话
在shell当中 工具 发送键输入到所有会话 会有新的发现
- 06-ICMP: Internet 控制报文协议
I C M P经常被认为是I P层的一个组成部分.它传递差错报文以及其他需要注意的信息. I C M P报文通常被I P层或更高层协议( T C P或U D P)使用.一些I C M P报文把差错报文 ...
- CentOS的文件属性:命令 ls -l
第一列:有11位 1)第一位表示文件类型 1)l表示链接文件 2)d表示目录 3)-普通文件 4)b块设备 磁盘分区就是这种类型 5)c 串行端口设备文件(字符设备文件),比如键盘,鼠标,打印机,t ...
- Spring Boot安装及入门实现
在Eclipse里使用Spring boot,首先需要安装Spring boot的插件STS. 注意:STS插件3.7.0以上版本启动需要JDK1.8 打开Eclipse 菜单栏 Help -> ...