wordcount原理:

1.mapper(Object key,Object value ,Context contex)阶段

2.从数据源读取一行数据传递给mapper函数的value

3.处理数据并将处理结果输出到reduce中去

String line = value.toString();

String[] words = line.split(" ");

context.write(word,1)

4.reduce(Object key ,List<value> values ,Context context)阶段

遍历values累加技术结果,并将数据输出

context.write(word,1)

代码示例:

Mapper类:

package com.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* Mapper <Long, String, String, Long>
* Mapper<LongWritable, Text, Text, LongWritable>//hadoop对上边的数据类型进行了封装
* LongWritable(Long):偏移量
* Text(String):输入数据的数据类型
* Text(String):输出数据的key的数据类型
* LongWritable(Long):输出数据的key的数据类型
* @author shiwen
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//1.读取一行
String line = value.toString();
//2.分割单词
String[] words = line.split(" ");
//3.统计单词
for(String word : words){
//4.输出统计
context.write(new Text(word), new LongWritable(1));
}
}
}

reduce类

package com.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReduce extends Reducer<Text, LongWritable, Text, LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException { long count = 0;
//1.遍历vlues统计数据
for(LongWritable value : values){
count += value.get();
}
//输出统计
context.write(key, new LongWritable(count)); } }

运行类:

package com.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import com.sun.jersey.core.impl.provider.entity.XMLJAXBElementProvider.Text; public class WordCountRunner {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.创建配置对象
Configuration config = new Configuration();
//2.Job对象
Job job = new Job(config); //3.设置mapperreduce所在的jar包
job.setJarByClass(WordCountRunner.class); //4.设置mapper的类
job.setMapOutputKeyClass(WordCountMapper.class);
//5.设置reduce的类
job.setReducerClass(WordCountReduce.class); //6.设置reduce输入的key的数据类型
job.setOutputKeyClass(Text.class);
//7.设置reduce输出的value的数据类型
job.setOutputValueClass(LongWritable.class); //8.设置输入的文件位置
FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.1.10:9000/input"));
//9.设置输出的文件位置
FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.1.10:9000/input")); //10.将任务提交给集群
job.waitForCompletion(true); } }

Mapperreduce的wordCount原理的更多相关文章

  1. Hive实现WordCount详解

    一.WordCount原理 初学MapReduce编程,WordCount作为入门经典,类似于初学编程时的Hello World.WordCount的逻辑就是给定一个/多个文本,统计出文本中每次单词/ ...

  2. 4、wordcount程序原理剖析及Spark架构原理

    一.wordcount程序原理深度剖析 二.Spark架构原理 1.

  3. MapReduce本地运行模式wordcount实例(附:MapReduce原理简析)

    1.      环境配置 a)        配置系统环境变量HADOOP_HOME b)        把hadoop.dll文件放到c:/windows/System32目录下 c)        ...

  4. Hadoop WordCount单词计数原理

    计算文件中出现每个单词的频数 输入结果按照字母顺序进行排序 编写WordCount.java 包含Mapper类和Reducer类 编译WordCount.java javac -classpath ...

  5. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  6. hadoop运行原理之Job运行(二) Job提交及初始化

    本篇主要介绍Job从客户端提交到JobTracker及其被初始化的过程. 以WordCount为例,以前的程序都是通过JobClient.runJob()方法来提交Job,但是现在大多用Job.wai ...

  7. MapReduce编程job概念原理

    在Hadoop中,每个MapReduce任务都被初始化为一个job,每个job又可分为两个阶段:map阶段和reduce阶段.这两个阶段分别用两个函数来表示.Map函数接收一个<key,valu ...

  8. JStorm第一个程序WordCount详解

    一.Strom基本知识(回顾) 1,首先明确Storm各个组件的作用,包括Nimbus,Supervisor,Spout,Bolt,Task,Worker,Tuple nimbus是整个storm任务 ...

  9. 开源分布式实时计算引擎 Iveely Computing 之 WordCount 详解(3)

    WordCount是很多分布式计算中,最常用的例子,例如Hadoop.Storm,Iveely Computing也不例外.明白了WordCount在Iveely Computing上的运行原理,就很 ...

随机推荐

  1. 树莓派Raspberry Pi zero w无线联网实测

    第一次学习树莓派,使用的是Raspberry Pi zero w的型号. 刚开始,就只有一块板子!!!这要怎么开发啊 经过网上查阅资料,发现可以通过WiFi连接PC端实现开发测试 准备材料:一根USB ...

  2. ALGO-31_蓝桥杯_算法训练_开心的金明(DP)

    问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎 么布置,你说了算,只要不超过N元钱就行”.今 ...

  3. 【HTTP】使用 RestTemplete 实现 post请求

    如上图,要求: post请求; x-www-form-urlencoded 类型; 如下代码没有进行整理,但是测试OK package com.chinamobile.epic.http; impor ...

  4. Ubuntu 14.10 下HBase错误集

    1 如果机群时间不同步,那么启动子节点RegionServer就会出问题 aused by: org.apache.hadoop.hbase.ipc.RemoteWithExtrasException ...

  5. Null hypothesis TypeⅠerror Type Ⅱ error

    Null hypothesis usually express the phenomenon of no effect or no difference. TypeⅠerror is the inco ...

  6. Flume的Channel

    一.Memory Channel 事件将被存储在内存中(指定大小的队列里) 非常适合那些需要高吞吐量且允许数据丢失的场景下 属性说明: 二.JDBC Channel 事件会被持久化(存储)到可靠的数据 ...

  7. shell 发送所有内容到会话

    在shell当中 工具 发送键输入到所有会话 会有新的发现

  8. 06-ICMP: Internet 控制报文协议

    I C M P经常被认为是I P层的一个组成部分.它传递差错报文以及其他需要注意的信息. I C M P报文通常被I P层或更高层协议( T C P或U D P)使用.一些I C M P报文把差错报文 ...

  9. CentOS的文件属性:命令 ls -l

    第一列:有11位 1)第一位表示文件类型 1)l表示链接文件 2)d表示目录 3)-普通文件 4)b块设备  磁盘分区就是这种类型 5)c 串行端口设备文件(字符设备文件),比如键盘,鼠标,打印机,t ...

  10. Spring Boot安装及入门实现

    在Eclipse里使用Spring boot,首先需要安装Spring boot的插件STS. 注意:STS插件3.7.0以上版本启动需要JDK1.8 打开Eclipse 菜单栏 Help -> ...