Solution

离散化 扫描线, 并用 $rest[i]$ 和 $cnt[i]$ 记录 第$i$列 总共有 $cnt[i]$棵常青树, 还有$rest[i]$ 没有被扫描到。

那么 第$i$ 列的方案数 为 $C(rest[i], k) * C(cnt[i]-rest[i], k)$。 乘上行上的方案数 并加入答案。

需要注意组合数要预处理, 我直接算发现$k > 2$就会WA。

Code

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define rd read()
#define R register
using namespace std; const int N = 2e5 + ; int cnt[N], sum[N], n, r, l, k, rest[N];
int vis[], ans;
int tot_x, tot_y, X[N], Y[N], c[N][]; struct node {
int x, y;
}pt[N]; vector<node> q[N]; inline int read() {
R int X = , p = ; char c = getchar();
for (; c > '' || c < ''; c = getchar())
if (c == '-') p = -;
for (; c >= '' && c <= ''; c = getchar())
X = X * + c - '';
return X * p;
} inline int lowbit(int x) {
return x & -x;
} inline void add(R int x, int d) {
for (;x <= tot_x; x += lowbit(x))
sum[x] += d;
} inline int query(R int x) {
int re = ;
for (; x; x -= lowbit(x))
re += sum[x];
return re;
} inline int fd_x(R int x) {
return lower_bound(X + , X + + tot_x, x) - X;
} inline int fd_y(R int y) {
return lower_bound(Y + , Y + + tot_y, y) - Y;
} inline int cmp(const node &A, const node &B) {
return A.y == B.y ? A.x < B.x : A.y < B.y;
} inline int C(int x) {
return c[x][k];
} int work(int x) {
int len = q[x].size(), re = ;
for (R int j = k - ; j <= len - k - ; ++j) {
int L = q[x][j].x, r = q[x][j + ].x;
int tmp = query(r - ) - query(L);
re += tmp * C(j + ) * C(len - j - );
}
for (R int j = ; j < len; ++j) {
int tmp = C(rest[q[x][j].x]) * C(cnt[q[x][j].x] - rest[q[x][j].x]);
add(q[x][j].x, -tmp);
rest[q[x][j].x]--;
tmp = C(rest[q[x][j].x]) * C(cnt[q[x][j].x] - rest[q[x][j].x]);
add(q[x][j].x, tmp);
}
return re;
} void init() {
c[][] = ;
for (int i = ; i <= n; ++i) {
c[i][] = ;
for (int j = ; j <= min(k, i); ++j)
c[i][j] = c[i - ][j - ] + c[i - ][j];
}
} int main()
{
r = rd, l = rd; n = rd;
for (R int i = ; i <= n; ++i) {
pt[i].x = rd, pt[i].y = rd;
X[++tot_x] = pt[i].x;
Y[++tot_y] = pt[i].y;
}
k = rd;
init();
sort(X + , X + + tot_x);
sort(Y + , Y + + tot_y);
tot_x = unique(X + , X + + tot_x) - X - ;
tot_y = unique(Y + , Y + + tot_y) - Y - ;
sort(pt + , pt + + n, cmp);
for (R int i = ; i <= n; ++i) {
pt[i].x = fd_x(pt[i].x);
pt[i].y = fd_y(pt[i].y);
cnt[pt[i].x]++;
q[pt[i].y].push_back(pt[i]);
}
for (R int i = ; i <= tot_x; ++i)
rest[i] = cnt[i];
for (R int i = ; i <= tot_y; ++i)
ans += work(i);
printf("%d\n", ans & 0x7fffffff);
}

BZOJ 1227 [SDOI2009]虔诚的墓主人 - 扫描线的更多相关文章

  1. BZOJ 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1078  Solved: 510[Submit][Stat ...

  2. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  3. 【以前的空间】bzoj 1227 [SDOI2009]虔诚的墓主人

    题解:hzw大神的博客说的很清楚嘛 http://hzwer.com/1941.html 朴素的做法就是每个点如果它不是墓地那么就可形成十字架的数量就是这个c(点左边的树的数量,k)*c(点右边的树的 ...

  4. 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1083  Solved: 514[Submit][Stat ...

  5. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  6. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  7. 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)

    [BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...

  8. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

  9. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

随机推荐

  1. MongoDB用户名和密码

    在windows先进入MongoDB安装目录的bin目录下运行mongo.exe文件,会直接进入到MongoDB后台: 然后show dbs可以查看数据库: 比如你需要在admin数据库下面创建用户, ...

  2. js基础-直接量与变量

    直接量 123 "abc" console.log("234") true false 变量 var x = 123 变量可先声明后赋值 var定义的都是局部变 ...

  3. 1.1、CDH 搭建Hadoop在安装之前(配置网络名称)

    重要: CDH需要IPv4.不支持IPv6.提示:粘合时,请使用bond0 IP地址,因为它代表所有聚合链接. 按如下方式配置群集中的每个主机,以确保所有成员可以相互通信: 将主机名设置为唯一名称(不 ...

  4. git查看某个文件修改历史

    [git查看某个文件修改历史] 1.使用git命令 git whatchanged charge.lua 显示某个文件的每个版本提交信息:提交日期,提交人员,版本号,提交备注(没有修改细节) git ...

  5. Computed property names

    [Computed property names] That allows you to put an expression in brackets [], that will be computed ...

  6. 【scrapy】关于爬取的内容是Unicode编码

    自己练习爬取拉钩网信息的时候爬取的信息如下: {'jobClass': [u'\u9500\u552e\u52a9\u7406'], 'jobUrl': u'https://www.lagou.com ...

  7. CentOS 查看进程状态

    Linux中ps与top命令   ============================================================================ 这两个命令都 ...

  8. 最小生成树算法(krustra+prime)

    给你一个图,求让图连通的边权和最小值 krustra算法是基于加边法,将所有边权排序,每次加一条边,将两个点放在同一个集合中.如果新加的点不在同一个集合中,就合并(并查集) 涉及到排序,可以用结构体存 ...

  9. Python+Selenium学习--简单对象定位

    场景 测试对象的定位和操作是webdriver的核心内容,其中操作又是建立在定位的基础之上,因此对象定位就越发显得重要了. 定位对象的目的一般有下面几种 操作对象 获得对象的属性,如获得测试对象的cl ...

  10. Python+Selenium学习--前进和后退

    场景 这两个功能一般不太常用.所能想到的场景大概也就是在几个页面间来回跳转,省去每次都get url. 代码 #!/usr/bin/env python # -*- coding:utf-8 -*- ...