【Luogu4609】建筑师(第一类斯特林数,组合数学)
【Luogu4609】建筑师(组合数学)
题面
题解
首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑。
考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\(i\)个数并且能够看到\(j\)个的方案数,强制最大值在最右侧。
每次添加最小的一个数放进来:\(f[i][j]=f[i-1][j-1]+f[i-1][j]*(i-2)\)
如果把它放在最前面,答案加一,也就是\(f[i-1][j-1]\)转移过来,
否则的话,因为最大值强制放在最后面,所以还剩下\(i-2\)个位置,所以就像上面这样转移。
那么,答案就是:
我们枚举最高的位置,然后两边分开考虑,
那么就是:
\]
这样子复杂度是\(O(100*10^5+Tn)\),可以拿到\(40pts\)
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MOD 1000000007
#define MAX 50050
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX][101];
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
f[0][0]=jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=50000;++i)
for(int j=1;j<=100;++j)
f[i][j]=(f[i-1][j-1]+1ll*f[i-1][j]*(i-2))%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
int T=read();
while(T--)
{
int n=read(),A=read(),B=read(),ans=0;
for(int i=1;i<=n;++i)
ans=(ans+1ll*f[i][A]*f[n-i+1][B]%MOD*C(n-1,i-1)%MOD)%MOD;
printf("%d\n",ans);
}
return 0;
}
然而这样不够优秀,我们继续颓柿子。
还是一样的,从左往右看和从右往左看是一样的。
所以还是只需要考虑一半,从最高的位置分成左右来看。
如果恰好只能够看见了A个建筑的话,我们可以把所有可以看到的建筑以及被它遮住的所有建筑分组,那么,我们可以把这个顺序认为是一个环,那么每一个能够被看见的建筑一定是这个环中的所有建筑中最高的那个,换而言之,一个环就能确定一部分建筑的顺序,使得它们恰好能够被看到一个,那么一个环排列就可以确定着一种方法。
因为现在左边恰好看见\(A\)个,右边恰好看见\(B\)个,所以等价于除了最高位置之外,一共还需要\(A+B-2\)个环,而总共有\(n-1\)个建筑可以用来环排列,而左边还需要看见\(A-1\)个建筑,所以等价于还需要选出\(A-1\)个环,因此总方案数就是\(C_{A+B-2}^{A-1}*S_{n}^{A+B-2}\)
其中\(S\)是第一类斯特林数。
#include<cstdio>
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,A,B,ans;
int S[50050][202],C[202][202];
int main()
{
S[0][0]=C[0][0]=C[1][0]=1;
for(int i=1;i<=200;C[++i][0]=1)
for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
for(int i=1;i<=50000;++i)
for(int j=1;j<=i&&j<=200;++j)
S[i][j]=(1ll*S[i-1][j]*(i-1)+S[i-1][j-1])%MOD;
int T=read();
while(T--)
{
n=read(),A=read(),B=read();
printf("%lld\n",1ll*S[n-1][A+B-2]*C[A+B-2][A-1]%MOD);
}
return 0;
}
【Luogu4609】建筑师(第一类斯特林数,组合数学)的更多相关文章
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- 【CF960G】Bandit Blues(第一类斯特林数,FFT)
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...
随机推荐
- kettle学习笔记(四)——kettle输入步骤
一.输入步骤概述 输入步骤主要分为以下几类: • 生成记录/自定义常量 • 获取系统信息 • 表输入 • 文本文件输入 • XML 文件输入 • Json输入 • 其他输入步骤 二.生成记录和自定义常 ...
- MySQL默认INFORMATION_SCHEMA,MySQL,TEST三个数据库用途(转)
本文简要说明了MySQL数据库安装好后自带的INFORMATION_SCHEMA,MySQL,TEST三个数据库的用途. 第一个数据库INFORMATION_SCHEMA:提供了访问数据库元数据的方式 ...
- 2017-2018 Exp7 网络欺诈技术防范 20155214
目录 Exp7 网络欺诈技术防范 实验内容 信息收集 知识点 Exp7 网络欺诈技术防范 实验内容 实验环境 主机 Kali 靶机 Windows 10 实验工具 平台 Metaploit 信息收集 ...
- face_recognition环境配置及命令行工具测试
由于某种不可抗力(又是它!)我写了这篇博客,主要目的是记录. face_recognition是啥子? face_recognition号称世界上最简单的人脸识别库,可使用 Python 和命令行进行 ...
- 1、JVM 内存模型+运行时数据区+JVM参数
JMM(内存模型) 1.’主内存+每个线程有自己的内存 JVM运行时数据区 包含:1.程序计算器(每个线程自带):2.JAVA-STACK(每个线程自带):3.本地方法stack:4.堆:5.方法区 ...
- [Deep-Learning-with-Python]计算机视觉中的深度学习
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面 ...
- Python学习之路(一)之Python基础1
目录 Python基础初识 1.Python介绍 1.1.Python简介 1.2.Python特点 1.3.Python应用领域 1.4.Python解释器的种类 2.Python基础初识 2.1. ...
- Redis数据备份、安全、管理服务器笔记
Redis 数据备份与恢复 Redis SAVE 命令用于创建当前数据库的备份. 实例 redis > SAVE OK 恢复数据 如果需要恢复数据,只需将备份文件 (dump.rdb) 移动到 ...
- 程序员大佬推荐的java学习路线
作为我的第一篇博客,我第一个想到的就是在校时就看到的这篇文章.并且在之后的时间里自己都反复观看过,有时候这不单单是一篇学习路线,也是审视自己技术能力的里程碑,和激励自己的鞭挞绳. 先来个书籍清单: & ...
- manjaro设置国内源
升级系统到最新 sudo pacman -Syyu 配置源 kate /etc/pacman.conf 官方镜像源(包括 core, extra, community, multilib ) sudo ...