(2017湖南省高中数学竞赛16题)
\(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\)
(1)求证:\(|CD|^2-|AB|^2=4|EF|^2\) 其中\(E,F\)为\(AB,CD\) 的中点.
(2)证明:\(A,B,C,D\) 四点共圆.

证明第(2)问: 设\(AB,CD\)的交点\(P(x_0,y_0)\),过点\(P\)的直线方程为
\[\begin{equation*}
\left\{ \begin{aligned}
x &= x_0+t \\
y&=y_0+kt
\end{aligned} \right.
\end{equation*}\]
与椭圆联立可得 \(m(x_0+t)^2+n(y_0+kt)^2=1\);
整理得 \((m+nk^2)t^2+2(mx_0+ny_0k)t+mx_0^2+ny_0^2-1=0\)
得到\(t_1t_2=\dfrac{mx_0^2+ny_0^2-1}{m+nk^2} ( \textbf{为定值})\) (由题意这里 \(k=\pm 1\))
故由相交线定理可得\(A,B,C,D\)四点共圆.
事实上,由上面的证明过程我们可以得到更一般的结论:非圆二次曲线,如果对称轴在 \(x\) 轴或者\(y\)轴上(相当于没有xy交叉项).对应的\(AC\)与\(BD\)直线如果斜率互为相反数(保证了\(k^2\)相等),则四点共圆.

MT【125】四点共圆的更多相关文章

  1. MT【210】四点共圆+角平分线

    (2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...

  2. MT【306】圆与椭圆公切线段

    已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...

  3. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  4. hihoCoder挑战赛14 A,B,C题解

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...

  5. poj1981 Circle and Points 单位圆覆盖问题

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Circle and Points Time Limit: 5000MS   Me ...

  6. poj2187 Beauty Contest(旋转卡壳)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Beauty Contest Time Limit: 3000MS   Memor ...

  7. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  8. [ZJOI2018]保镖

    [ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...

  9. 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)

    题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...

随机推荐

  1. cURL函数库错误码说明之PHP curl_errno函数

    背景概述:游戏接口是使用PHP cURL扩展进行请求操作.但是,被请求的服务器经常会无故的不响应或者超时.总之,就是请求之后收不到响应回来的数据.这时候可不能说对方API接口有问题,或者,服务器有故障 ...

  2. 开启Node.js的大门

    其实也没什么好说的,简而言之,就是如何配置node.js环境,然后进行开发.博主最近比较堕落,觉得什么事情也没有就不知道想干什么,想融入一些事情又觉得没大神指引,于是自娱自乐开始自己玩node.js, ...

  3. odoo返写数据

    #确认按钮 反写回合同页面,当前页面反写数据: def action_split_order_ht(self,cr,uid,ids,context=None): assert len(ids)==1 ...

  4. Landen邀请码

    Y2PZ6U8 landen 输入邀请码,注册一年会额外赠送一个月,注册两年会额外赠送三个月.

  5. Android开发——Fragment知识整理(二)

    0.  前言 Android开发中的Fragment的应用非常广泛,在Android开发--Fragment知识整理(一)中简单介绍了关于Fragment的生命周期,常用API,回退栈的应用等知识.这 ...

  6. Codeforces 948D Perfect Security(字典树)

    题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...

  7. Runtime.getRuntime().addShutdownHook(Thread thread) 程序关闭时钩子,优雅退出程序

    根据 Java API, 所谓 shutdown hook 就是已经初始化但尚未开始执行的线程对象.在Runtime 注册后,如果JVM要停止前,这些 shutdown hook 便开始执行.也就是在 ...

  8. python基础篇----基本数据类型

    bit  #bit_length 当前数字的二进制,只用用n位来表示a = 123b = a.bit_length()print(b)#==>7

  9. flask入门小方法

    我是在pycharm中写的.那么需要在Termainal中cd 到当前文件所在的文件夹,在运行python py文件名 一开始想用面向对象的方法来封装这些小模块,但发现在面向对象中要用到类属性,以及类 ...

  10. 使用VSCode调试单个PHP文件

    突然发现是可以使用 VSCode 调试单个 PHP 文件的,今天之前一直没有弄成功,还以为 VSCode 是不能调试单文件呢.这里记录一下今天这个"突然发现"的过程. 开始,是在看 ...