BZOJ 2039 [2009国家集训队]employ人员雇佣 网络流
链接
题解
这题建图好神,自己瞎搞了半天,最后不得不求教了企鹅学长的博客,,,,发现建图太神了!!
s向每个人连sum(e[i][x]) 的边,每个人向T连a[i]的边。两两人之间连2 * e[i][j]的边即可。
最后总的e – maxflow即为答案。
为什么我就没想到“源点向每个人连sum(e[i][x]) 的边”……
犯的错误:
为了方便,对于双向边,用ADD(u, v, w), ADD(v, u, w)
代替了ADD(u, v, w), ADD(v, u, 0), ADD(v, u, w), ADD(u, v, 0)
,但是却没注意到ADD(u, v, w)
和ADD(v, u, w)
一定要同时加,否则不满足反向边是e ^ 1这个性质……
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
#define enter putchar('\n')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 2005, M = 4000005;
ll INF = 0x3f3f3f3f3f3f3f3f;
int n, src, des, ecnt = 1, adj[N], cur[N], nxt[M], go[M];
ll a[N][N], dis[N], cap[M], tot;
void ADD(int u, int v, ll _cap){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
cap[ecnt] = _cap;
}
void add(int u, int v, ll _cap){
ADD(u, v, _cap);
ADD(v, u, 0);
}
bool bfs(){
static int que[N], qr;
for(int i = 1; i <= des; i++)
dis[i] = -1, cur[i] = adj[i];
que[qr = 1] = src, dis[src] = 0;
for(int ql = 1; ql <= qr; ql++){
int u = que[ql];
for(int e = adj[u], v; e; e = nxt[e])
if(cap[e] && dis[v = go[e]] == -1){
dis[v] = dis[u] + 1, que[++qr] = v;
if(v == des) return 1;
}
}
return 0;
}
ll dfs(int u, ll flow){
if(u == des) return flow;
ll ret = 0, delta;
for(int &e = cur[u], v; e; e = nxt[e])
if(cap[e] && dis[v = go[e]] == dis[u] + 1){
delta = dfs(v, min(cap[e], flow - ret));
cap[e] -= delta;
cap[e ^ 1] += delta;
ret += delta;
if(ret == flow) return ret;
}
dis[u] = -1;
return ret;
}
ll maxflow(){
ll ret = 0;
while(bfs()) ret += dfs(src, INF);
return ret;
}
int main(){
read(n), src = n + 1, des = src + 1;
for(ll i = 1, t; i <= n; i++)
read(t), add(i, des, t);
for(int i = 1; i <= n; i++){
ll sum = 0;
for(int j = 1; j <= n; j++){
read(a[i][j]);
sum += a[i][j], tot += a[i][j];
if(i >= j) continue;
ADD(i, j, 2 * a[i][j]), ADD(j, i, 2 * a[i][j]);
}
add(src, i, sum);
}
write(tot - maxflow()), enter;
return 0;
}
BZOJ 2039 [2009国家集训队]employ人员雇佣 网络流的更多相关文章
- BZOJ 2039: [2009国家集训队]employ人员雇佣
2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1369 Solved: 667[Submit ...
- bzoj 2039 [2009国家集训队]employ人员雇佣——二元关系
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2039 用最小割看.对于一组关系 i , j ,如果都选,收益 2*Ei,j,可以看作0,作为 ...
- bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】
一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...
- 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)
2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1511 Solved: 728 Descri ...
- 2039: [2009国家集训队]employ人员雇佣
任意门 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即 ...
- BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割
BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...
- 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割
[BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...
- BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...
- BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)
题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...
随机推荐
- SQL Server聚合函数与聚合开窗函数
以下面这个表的数据作为示例. 什么是聚合函数? 聚合函数:聚合函数就是对一组值进行计算后返回单个值(即分组).聚合函数在计算时都会忽略空值(null). 所有的聚合函数均为确定性函数.即任何时候使用一 ...
- mac下载、破解、安装webstorm编辑器
1.进入webstorm官网 http://www.jetbrains.com/webstorm/,点击DOWNLOAD,开始下载webstorm安装包. untitled.png 2.开始安装 双击 ...
- ORM框架-SQLAchemy使用
一.ORM简介 orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型的 ...
- lnmp如何实现伪静态,默认目录伪静态
LNMP一键安装包一直是我小内存VPS的首选安装环境,因为它占用资源少,性能高.最新发布的lnmp0.7还增加了对LNMPA的支持,LNMPA使用Nginx作为前端服务能够更快更及时的静态页面.js. ...
- 汇编 do while循环
do while生成的汇编代码 do while汇编还原成C++代码 一. do while成生的汇编代码 // int i=0; // do // { // i++; // } while ( ...
- JQuery快速入门-选择器
JQuery选择器 JQuery 选择器继承了CSS 与Path 语言的部分语法,允许通过标签名.属性名或内容对DOM 元素进行快速.准确的选择,而不必担心浏览器的兼容性,通过jQuery 选择器对页 ...
- jira webhook 事件触发并程序代码调用jenkins接口触发构建操作
要解决的问题 开发管理工具触发站点构建事件,事件处理中需要调用Jenkins接口开始构建动作. 我的应用场景: 使用jira作为管理工具,在jira中创建自定义的工作流来规定测试,上线,发布等流程,并 ...
- 解决SSH登录用户执行的命令部分环境变量参数不生效的问题
问题概况 linux机器在/etc/profile配置完成环境变量后,SSH到目标机器执行命令,但是获取不到已配置的环境变量值. 例如场景: 在/etc/profile配置了http代理 export ...
- Linux下的信号详解
文章链接:https://blog.csdn.net/qq_38646470/article/details/80257512
- OpenGL 笔记 <2> Compiling and Linking a shader program
Preface 这一节所有的主要内容都在一个OpenGL库文件中<LoadShaders.h> ,只需要用LoadShader()函数进行加载即可.但是由于老是出错,所以自己实现了一下,也 ...