CRT从各种方面上都吊打exCRT啊......

短,好理解...

考虑构造bi使得bi % pi = ai,bi % pj = 0。然后全加起来就行了。

显然bi的构造就是ai * (P/pi) * inv(P/pi)。

LL a = , p = MO - ;
for(int i = ; i <= ; i++) {
a = (a + ans[i] * (p / mod[i]) % p * qpow(p / mod[i], mod[i] - , mod[i]) % p) % p;
}

exCRT:

是这样的,重新手推了一个短一点的模板。题是洛谷P3868 猜数字

 inline int exCRT(int n, int *a, int *b) {
int t = a[], p = b[], x, y;
for(int i = ; i <= n; i++) {
int g = exgcd(p, b[i], x, y);
p = lcm(p, b[i]);
t = (t - a[i]) % p;
y = y * (t / g) % p;
t = (a[i] + y * b[i]) % p;
}
return t;
}

具体操作的时候开long long,龟速乘,记得全程避免负数。


先背为敬。

 #include <cstdio>
#include <algorithm> typedef long long LL;
const int N = ; LL p[N], a[N]; inline LL mod(LL a, LL c) {
if(c < ) {
c = (~c) + ;
}
while(a >= c) {
a -= c;
}
while(a < ) {
a += c;
}
return a;
}
inline LL mul(LL a, LL b, LL c) {
LL ans = ;
while(b) {
if(b & ) {
ans = mod(ans + a, c);
}
a = mod(a << , c);
b = b >> ;
}
return ans;
}
LL exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) {
x = ;
y = ;
return a;
}
LL g = exgcd(b, a % b, x, y);
std::swap(x, y);
y -= (a / b) * x;
return g;
} int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%lld%lld", &p[i], &a[i]);
} LL A = a[], P = p[];
for(int i = ; i <= n; i++) {
LL x, y;
LL C = (a[i] - A), g = exgcd(P, p[i], x, y);
C = (C % p[i] + p[i]) % p[i];
if(C % g) {
puts("-1");
return ;
} x = mul(x, C / g, P / g * p[i]);
A += mul(x, P, P / g * p[i]);
P *= p[i] / g;
A = mod(A, P);
} // x === A mod P
LL x, y;
exgcd(P, , y, x);
x *= A;
x = (x % P + P) % P;
printf("%lld\n", x);
return ;
}

AC代码

尝试合并两个同余方程:

判断有解后可用exgcd解方程。

至此合并完成。

所有方程逐一合并即可。

CRT && exCRT模板的更多相关文章

  1. [笔记] CRT & exCRT

    [笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...

  2. CRT&EXCRT 中国剩余定理及其扩展

    前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...

  3. [note]CRT&exCRT

    中国剩余定理 别人的blog 假设现在有关于x的同余方程组(p1,p2均为质数) \(x=a_1\pmod {p_1}\) \(x=a_2\pmod {p_2}\) 可以转化成如下形式 \(x=a_1 ...

  4. crt,excrt学习总结

    \(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: ...

  5. 中国剩余定理(excrt) 模板

    excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...

  6. CRT & EXCRT 学习笔记

    这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j ...

  7. CRT&EXCRT学习笔记

    非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...

  8. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  9. CRT和EXCRT简单学习笔记

    中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...

随机推荐

  1. 20155305《网络对抗》Web基础

    20155305<网络对抗>Web基础 实验过程 Web前端:HTML 使用netstat -aptn查看80端口是否被占用(上次实验设置为Apache使用80端口),如果被占用了就kil ...

  2. 20155325 Exp3 免杀原理与实践

    基础问题回答 杀软是如何检测出恶意代码的? 1.1 基于特征码的检测 1.1.1 特征库举例-Snort 1.2 启发式恶意软件检测 1.3 基于行为的恶意软件检测 免杀是做什么? 一般是对恶意软件做 ...

  3. 纯 CSS 解决自定义 CheckBox 背景颜色问题

    CodePen 需要使用色 #ec6337(当然可以是任意颜色),解决问题:记住密码定制 CheckBox,解释全在注释里 主要使用到 ::before 或 ::after 伪类处理,伪装成内部的那个 ...

  4. 详解C#7.0新特性

    1. out 变量(out variables) 以前我们使用out变量必须在使用前进行声明,C# 7.0 给我们提供了一种更简洁的语法 “使用时进行内联声明” .如下所示: 1 var input ...

  5. 小白之selenium+python关于cookies绕开登录2

    首先,由于新开始在博客园中写随笔,可能在内容的布局方面就不太懂,导致布局很丑,各位见谅,但是字还是原来的那字,内容还是原来的内容,少了点包装, 下面是对cookie的扩展知识 1.配置文件存储在哪里? ...

  6. GTK学习笔记————创建窗口

    创建gtk1.c文件 代码 #include <gtk/gtk.h> int main (int argc, char *argv[]) { GtkWidget *window; gtk_ ...

  7. Unity插件-NGUI学习笔记

    Anchors 的作用 类似Android里面的.9格式图片的功能, 边框可以随着文字变大而变大. 实现方法: 用NGUI 创建一个Sprite, 命名为TextBg, 一个Label, Label的 ...

  8. zookeeper应用

    1. 下载zookeeper-3.4.10.tar.gz 2.tar zxvf zoo*.tar.gz 3. cd /usr/local/zookeeper/zookeeper-3.4.10/conf ...

  9. 20181204-4 互评Final版本

    此次作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2478 互评 一.互评Final版本——杨老师粉丝群<PinBall ...

  10. BugPhobia准备篇章:Scrum Meeting工作分析篇

    特别说明:此博客不计入正式开发过程的Scrum Meeting篇章,只是工作的基础分析 前端 王鹿鸣.钱林琛撰写初稿 能否前端完成一个页面后就能在本地跑起来进行测试? 能否在前端和后端完成对接后单页面 ...