CRT && exCRT模板
CRT从各种方面上都吊打exCRT啊......
短,好理解...
考虑构造bi使得bi % pi = ai,bi % pj = 0。然后全加起来就行了。
显然bi的构造就是ai * (P/pi) * inv(P/pi)。
LL a = , p = MO - ;
for(int i = ; i <= ; i++) {
a = (a + ans[i] * (p / mod[i]) % p * qpow(p / mod[i], mod[i] - , mod[i]) % p) % p;
}
exCRT:
是这样的,重新手推了一个短一点的模板。题是洛谷P3868 猜数字
inline int exCRT(int n, int *a, int *b) {
int t = a[], p = b[], x, y;
for(int i = ; i <= n; i++) {
int g = exgcd(p, b[i], x, y);
p = lcm(p, b[i]);
t = (t - a[i]) % p;
y = y * (t / g) % p;
t = (a[i] + y * b[i]) % p;
}
return t;
}
具体操作的时候开long long,龟速乘,记得全程避免负数。
先背为敬。
#include <cstdio>
#include <algorithm> typedef long long LL;
const int N = ; LL p[N], a[N]; inline LL mod(LL a, LL c) {
if(c < ) {
c = (~c) + ;
}
while(a >= c) {
a -= c;
}
while(a < ) {
a += c;
}
return a;
}
inline LL mul(LL a, LL b, LL c) {
LL ans = ;
while(b) {
if(b & ) {
ans = mod(ans + a, c);
}
a = mod(a << , c);
b = b >> ;
}
return ans;
}
LL exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) {
x = ;
y = ;
return a;
}
LL g = exgcd(b, a % b, x, y);
std::swap(x, y);
y -= (a / b) * x;
return g;
} int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%lld%lld", &p[i], &a[i]);
} LL A = a[], P = p[];
for(int i = ; i <= n; i++) {
LL x, y;
LL C = (a[i] - A), g = exgcd(P, p[i], x, y);
C = (C % p[i] + p[i]) % p[i];
if(C % g) {
puts("-1");
return ;
} x = mul(x, C / g, P / g * p[i]);
A += mul(x, P, P / g * p[i]);
P *= p[i] / g;
A = mod(A, P);
} // x === A mod P
LL x, y;
exgcd(P, , y, x);
x *= A;
x = (x % P + P) % P;
printf("%lld\n", x);
return ;
}
AC代码
尝试合并两个同余方程:

判断有解后可用exgcd解方程。

至此合并完成。
所有方程逐一合并即可。
CRT && exCRT模板的更多相关文章
- [笔记] CRT & exCRT
[笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- [note]CRT&exCRT
中国剩余定理 别人的blog 假设现在有关于x的同余方程组(p1,p2均为质数) \(x=a_1\pmod {p_1}\) \(x=a_2\pmod {p_2}\) 可以转化成如下形式 \(x=a_1 ...
- crt,excrt学习总结
\(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: ...
- 中国剩余定理(excrt) 模板
excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...
- CRT & EXCRT 学习笔记
这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j ...
- CRT&EXCRT学习笔记
非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- CRT和EXCRT简单学习笔记
中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...
随机推荐
- 20155336虎光元 Exp1PC平台逆向破解及Bof基础实践
20155336Exp1 PC平台逆向破解(5)M 实践目标: 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入 ...
- Linux下Maven+SVN自动打包脚本
公司的开发环境每次部署项目都很麻烦,需要手动打包并上传上去.这个太麻烦了,所以就准备搞个自动打包的脚本.脚本自动从svn代码库里面更新最新的代码下来,然后maven打包,最后把war包丢到to ...
- mount状态下表空间情报试验
SQL> shutdown immediate;Database closed.Database dismounted.ORACLE instance shut down.SQL> sta ...
- Google是如何教会机器玩Atari游戏的
转自:http://blog.csdn.net/revolver/article/details/50177219 今年上半年(2015年2月),Google在Nature上发表了一篇论文:Human ...
- 使用fddb的测试工具测试自己的检测器
本文是在linux下测试的,首先编译,并安装gnuplot 按照程序给定,将文件放置到对应的文件夹下 #runEvaluate.pl # where gnuplot ismy $GNUPLOT = & ...
- centos6 和centos7 安装git 的区别
centos6 和centos7 安装git 的区别 centos6安装git yum install curl-devel expat-devel gettext-devel openssl-dev ...
- Linux/Mac 挂载远程服务器目录到本地
1. 安装 sudo apt-get installsshfs 2. 创建SSHFS 挂载目录 sudo mkdir/mnt/siyuan 3.使用SSHFS 挂载远程的文件系统 sudo sshfs ...
- 35道Redis面试题
1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数 ...
- 金蝶盘点机PDA条码数据采集器WMS系统具体有哪些功能
1. 使用汉码盘点机PDA实现仓库条码管理的好处 (1) 传统电脑管理软件出入库需要来回电脑跑人工手工电脑录单效率低,通过人眼识别商品品种和清点商品数量,容易造成录单错误.从而造成电脑管理软件库存 ...
- CodeMirror 小册子
User manual and reference guide version 5.41.1 用户手册和参考指南 CodeMirror is a code-editor component ...