CRT && exCRT模板
CRT从各种方面上都吊打exCRT啊......
短,好理解...
考虑构造bi使得bi % pi = ai,bi % pj = 0。然后全加起来就行了。
显然bi的构造就是ai * (P/pi) * inv(P/pi)。
LL a = , p = MO - ;
for(int i = ; i <= ; i++) {
a = (a + ans[i] * (p / mod[i]) % p * qpow(p / mod[i], mod[i] - , mod[i]) % p) % p;
}
exCRT:
是这样的,重新手推了一个短一点的模板。题是洛谷P3868 猜数字
inline int exCRT(int n, int *a, int *b) {
int t = a[], p = b[], x, y;
for(int i = ; i <= n; i++) {
int g = exgcd(p, b[i], x, y);
p = lcm(p, b[i]);
t = (t - a[i]) % p;
y = y * (t / g) % p;
t = (a[i] + y * b[i]) % p;
}
return t;
}
具体操作的时候开long long,龟速乘,记得全程避免负数。
先背为敬。
#include <cstdio>
#include <algorithm> typedef long long LL;
const int N = ; LL p[N], a[N]; inline LL mod(LL a, LL c) {
if(c < ) {
c = (~c) + ;
}
while(a >= c) {
a -= c;
}
while(a < ) {
a += c;
}
return a;
}
inline LL mul(LL a, LL b, LL c) {
LL ans = ;
while(b) {
if(b & ) {
ans = mod(ans + a, c);
}
a = mod(a << , c);
b = b >> ;
}
return ans;
}
LL exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) {
x = ;
y = ;
return a;
}
LL g = exgcd(b, a % b, x, y);
std::swap(x, y);
y -= (a / b) * x;
return g;
} int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%lld%lld", &p[i], &a[i]);
} LL A = a[], P = p[];
for(int i = ; i <= n; i++) {
LL x, y;
LL C = (a[i] - A), g = exgcd(P, p[i], x, y);
C = (C % p[i] + p[i]) % p[i];
if(C % g) {
puts("-1");
return ;
} x = mul(x, C / g, P / g * p[i]);
A += mul(x, P, P / g * p[i]);
P *= p[i] / g;
A = mod(A, P);
} // x === A mod P
LL x, y;
exgcd(P, , y, x);
x *= A;
x = (x % P + P) % P;
printf("%lld\n", x);
return ;
}
AC代码
尝试合并两个同余方程:

判断有解后可用exgcd解方程。

至此合并完成。
所有方程逐一合并即可。
CRT && exCRT模板的更多相关文章
- [笔记] CRT & exCRT
[笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- [note]CRT&exCRT
中国剩余定理 别人的blog 假设现在有关于x的同余方程组(p1,p2均为质数) \(x=a_1\pmod {p_1}\) \(x=a_2\pmod {p_2}\) 可以转化成如下形式 \(x=a_1 ...
- crt,excrt学习总结
\(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: ...
- 中国剩余定理(excrt) 模板
excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...
- CRT & EXCRT 学习笔记
这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j ...
- CRT&EXCRT学习笔记
非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- CRT和EXCRT简单学习笔记
中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...
随机推荐
- 20155305《网络对抗》Web基础
20155305<网络对抗>Web基础 实验过程 Web前端:HTML 使用netstat -aptn查看80端口是否被占用(上次实验设置为Apache使用80端口),如果被占用了就kil ...
- 20155325 Exp3 免杀原理与实践
基础问题回答 杀软是如何检测出恶意代码的? 1.1 基于特征码的检测 1.1.1 特征库举例-Snort 1.2 启发式恶意软件检测 1.3 基于行为的恶意软件检测 免杀是做什么? 一般是对恶意软件做 ...
- 纯 CSS 解决自定义 CheckBox 背景颜色问题
CodePen 需要使用色 #ec6337(当然可以是任意颜色),解决问题:记住密码定制 CheckBox,解释全在注释里 主要使用到 ::before 或 ::after 伪类处理,伪装成内部的那个 ...
- 详解C#7.0新特性
1. out 变量(out variables) 以前我们使用out变量必须在使用前进行声明,C# 7.0 给我们提供了一种更简洁的语法 “使用时进行内联声明” .如下所示: 1 var input ...
- 小白之selenium+python关于cookies绕开登录2
首先,由于新开始在博客园中写随笔,可能在内容的布局方面就不太懂,导致布局很丑,各位见谅,但是字还是原来的那字,内容还是原来的内容,少了点包装, 下面是对cookie的扩展知识 1.配置文件存储在哪里? ...
- GTK学习笔记————创建窗口
创建gtk1.c文件 代码 #include <gtk/gtk.h> int main (int argc, char *argv[]) { GtkWidget *window; gtk_ ...
- Unity插件-NGUI学习笔记
Anchors 的作用 类似Android里面的.9格式图片的功能, 边框可以随着文字变大而变大. 实现方法: 用NGUI 创建一个Sprite, 命名为TextBg, 一个Label, Label的 ...
- zookeeper应用
1. 下载zookeeper-3.4.10.tar.gz 2.tar zxvf zoo*.tar.gz 3. cd /usr/local/zookeeper/zookeeper-3.4.10/conf ...
- 20181204-4 互评Final版本
此次作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2478 互评 一.互评Final版本——杨老师粉丝群<PinBall ...
- BugPhobia准备篇章:Scrum Meeting工作分析篇
特别说明:此博客不计入正式开发过程的Scrum Meeting篇章,只是工作的基础分析 前端 王鹿鸣.钱林琛撰写初稿 能否前端完成一个页面后就能在本地跑起来进行测试? 能否在前端和后端完成对接后单页面 ...