和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水。

设\(a[i]\)表示\([1,m]\)中$ \mod p\(余\)i\(的数的个数,\)f[i][j]\(表示用\)i\(个\)[1,m]\(中的数凑出\)j$的方案数

那么转移方程是\(f[i][j]=\sum_{k=0}^{p-1}f[i-1][(j-k)\mod m]\times a[k]\)

直接多项式快速幂即可

但是还有2条件,至少选一个质数,其实就是全都能选的减去不选质数的方案数

另外,这个模数要用MTT,贼简单,懒得写了,咕咕咕

#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 20170408
#define M 4491
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
typedef std::complex<double> cp;
int n,m,p,ANS;
int rev[257],N,lg;
cp FA[257],FB[257],GA[257],GB[257],omg[257],inv[257];
struct naive{
int t[100];
il int& operator [](int x){return t[x];}
};
il vd fft(cp*A,int n,cp*omg){
for(int i=0;i<N;++i)if(rev[i]>i)std::swap(A[rev[i]],A[i]);
for(int o=1;o<n;o<<=1)
for(cp*p=A;p!=A+n;p+=o<<1)
for(int i=0;i<o;++i){
cp t=omg[n/(o<<1)*i]*p[i+o];
p[i+o]=p[i]-t,p[i]+=t;
}
}
cp A[257];
il vd work(cp*a,cp*b,int*s,int k){
for(int i=0;i<N;++i)A[i]=a[i]*b[i];
fft(A,N,inv);
for(int i=0;i<N;++i)s[i%p]=(s[i%p]+k*((ll)(A[i].real()/N+0.5)%mod))%mod;
}
il naive operator *(naive&a,naive&b){
for(int i=0;i<p;++i)FA[i]=a[i]/M,FB[i]=a[i]%M;
for(int i=0;i<p;++i)GA[i]=b[i]/M,GB[i]=b[i]%M;
for(int i=p;i<N;++i)FA[i]=FB[i]=GA[i]=GB[i]=0;
fft(FA,N,omg),fft(FB,N,omg),fft(GA,N,omg),fft(GB,N,omg);
naive ret;for(int i=0;i<p;++i)ret[i]=0;
work(FA,GA,ret.t,M*M);work(FA,GB,ret.t,M);work(FB,GA,ret.t,M);work(FB,GB,ret.t,1);
return ret;
}
const double pi=acos(-1);
int main(){
n=gi(),m=gi(),p=gi(),ANS=0;
N=1,lg=0;while(N<p<<1)N<<=1,++lg;
for(int i=0;i<N;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<N;++i)omg[i]=cp(cos(i*pi*2/N),sin(i*pi*2/N)),inv[i]=conj(omg[i]);
naive ans,x;
for(int i=0;i<p;++i)ans[i]=0;ans[0]=1;
for(int i=0;i<p;++i)x[i]=m/p;
for(int i=m/p*p+1;i<=m;++i)++x[i%p];
int y=n;
while(y){
if(y&1)ans=ans*x;
x=x*x;y>>=1;
}
ANS+=ans[0];
static int pri[20000000],pr=0;
static bool yes[20000001];
for(int i=0;i<p;++i)ans[i]=0;ans[0]=1;
for(int i=0;i<p;++i)x[i]=0;
yes[1]=1;
for(int i=2;i<=m;++i){
if(!yes[i])pri[++pr]=i;
for(int j=1;j<=pr&&i*pri[j]<=m;++j){
yes[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
for(int i=1;i<=m;++i)x[i%p]+=yes[i];
for(int i=0;i<p;++i)x[i]%=mod;
y=n;
while(y){
if(y&1)ans=ans*x;
x=x*x;y>>=1;
}
ANS-=ans[0];
printf("%d\n",(ANS+mod)%mod);
return 0;
}

洛咕 P3702 [SDOI2017]序列计数的更多相关文章

  1. 洛谷P3702 [SDOI2017]序列计数

    题目大意: Alice想要得到一个长度为\(n\)的序列,序列中的数都是不超过\(m\)的正整数,而且这\(n\)个数的和是\(p\)的倍数. Alice还希望,这\(n\)个数中,至少有一个数是质数 ...

  2. P3702 [SDOI2017]序列计数

    P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...

  3. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  4. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  5. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  6. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  7. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

  8. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

  9. [BZOJ4818][SDOI2017]序列计数(动规+快速幂)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status ...

随机推荐

  1. Python+Selenium笔记(五):生成测试报告

    #HTMLTestRunner代码修改参考 微微微笑 的说明,下面是链接,这个已经说的很详细了 https://www.cnblogs.com/miniren/p/5301081.html (一) 前 ...

  2. 【three.js练习程序】旋转、缩放场景

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. Saltstack安装配置过程

    一.安装配置 1.服务器配置情况 三台服务器,均需要关闭iptables和selinux(否则salt执行指令无效) master: 192.168.60.139 centos slave: 192. ...

  4. 解决JBoss只能通过localhost访问不能通过IP的问题

    前序 现在EJB是真的有点落伍了么,网上找点资料都挺难的样子,而且都是很久的了..好吧,最近对EJB有点兴趣学习一下,结果下载到服务器启动后,居然不能直接通过服务器IP访问,也是醉了,默认只能通过本地 ...

  5. 脱壳_01_虚拟机壳_VMP

    写在前面的话: 上一篇文章中,带领大家一起分析了简单的压缩壳ASPACK,今天,就和大家一起来揭开VMP这道神秘的面纱: [花指令]:扰乱调试器的,并不执行: [混淆]:对原指令进行拆解或等价替换,会 ...

  6. glViewport()函数和glOrtho()函数的理解(转)

    http://www.cnblogs.com/yxnchinahlj/archive/2010/10/30/1865298.html 在OpenGL中有两个比较重要的投影变换函数,glViewport ...

  7. 内网DHCP攻击

    局域网内DHCP攻击 实验环境:两个win2008 r2虚拟机(一台用作正常的DHCP服务器,另一台用作伪造DHCP服务器),两个win7虚拟机(用作客户机),一个kali虚拟机(用作攻击,耗尽DHC ...

  8. 阿里八八Alpha阶段Scrum(6/12)

    今日进度 叶文滔: 修复了无法正确判断拖曳与点击的BUG,并且成功连接添加界面. 会议内容 会议照片 明日安排 叶文滔: 继续完善按钮功能 王国超: 继续攻克日程界面显示存在的BUG 俞鋆: 继续进行 ...

  9. LVM操作

    创建LVM,并挂载 1.对磁盘进行分区fdisk /dev/sdb [root@testdb ~]# fdisk /dev/sdbDevice contains neither a valid DOS ...

  10. pycharm同步

    只有专业版的才能同步服务器 按照这个来:https://zhuanlan.zhihu.com/p/35067462 3.然后配置映射信息 local path是自己的工程的本地目录路径, Deploy ...