2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)
传送门
生成函数好题。
题意:求n个点的简单(无重边无自环)无向连通图数目
思路:
对简单无向图构造生成函数f(x)=∑n2Cn2xnn!f(x)=\sum_n2^{C_n^2}\frac{x^n}{n!}f(x)=∑n2Cn2n!xn
然后令答案的生成函数为g(x)=∑ncnxnn!g(x)=\sum_nc_n\frac{x^n}{n!}g(x)=∑ncnn!xn
由于f(x)f(x)f(x)是由g(x)g(x)g(x)平凑而成,所以有f(x)=eg(x)f(x)=e^{g(x)}f(x)=eg(x)所以g(x)=lnf(x)g(x)=lnf(x)g(x)=lnf(x)
然后上一波多项式取对即可。
代码:
#include<bits/stdc++.h>
#define ri register int
#define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b))
#define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod)
#define mul(a,b) ((ll)(a)*(b)%mod)
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int mod=1004535809;
int n,lim,tim;
vector<int>A,B,pos,Inv,ifac,fac;
inline void init(const int&up){
lim=1,tim=0;
while(lim<=up)lim<<=1,++tim;
pos.resize(lim),A.resize(lim),B.resize(lim),pos[0]=0;
for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline int ksm(int a,ll p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
inline void ntt(vector<int>&a,const int&type){
for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
for(ri mid=1,wn,mult=(mod-1)/2,typ=type==1?3:(mod+1)/3;mid<lim;mid<<=1,mult>>=1){
wn=ksm(typ,mult);
for(ri j=0,len=mid<<1;j<lim;j+=len)for(ri k=0,a0,a1,w=1;k<mid;++k,w=mul(w,wn)){
a0=a[j+k],a1=mul(w,a[j+k+mid]);
a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);
}
}
if(type==-1)for(ri i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=mul(a[i],inv);
}
struct poly{
vector<int>a;
poly(int k=0,int x=0){a.resize(k+1),a[k]=x;}
inline int&operator[](const int&k){return a[k];}
inline const int&operator[](const int&k)const{return a[k];}
inline int deg()const{return a.size()-1;}
inline poly extend(const int&k){poly ret=*this;return ret.a.resize(k+1),ret;}
friend inline poly operator+(const poly&a,const poly&b){
poly ret(max(a.deg(),b.deg()));
for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
for(ri i=0;i<=b.deg();++i)ret[i]=add(ret[i],b[i]);
return ret;
}
friend inline poly operator-(const poly&a,const poly&b){
poly ret(max(a.deg(),b.deg()));
for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
for(ri i=0;i<=b.deg();++i)ret[i]=dec(ret[i],b[i]);
return ret;
}
friend inline poly operator*(const int&a,const poly&b){
poly ret(b.deg());
for(ri i=0;i<=b.deg();++i)ret[i]=mul(a,b[i]);
return ret;
}
friend inline poly operator*(const poly&a,const poly&b){
int n=a.deg(),m=b.deg();
init(n+m);
poly ret;
for(ri i=0;i<=n;++i)A[i]=a[i];
for(ri i=0;i<=m;++i)B[i]=b[i];
for(ri i=n+1;i<lim;++i)A[i]=0;
for(ri i=m+1;i<lim;++i)B[i]=0;
ntt(A,1),ntt(B,1);
for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);
return ntt(A,-1),ret.a=A,ret;
}
inline poly poly_inv(poly a,const int&k){
if(k==1)return (poly){0,ksm(a[0],mod-2)};
a=a.extend(k);
poly f0=poly_inv(a,(k+1)>>1);
return (2*f0-((f0*f0.extend(k))*a).extend(k)).extend(k);
}
inline poly poly_direv(const poly&a){
poly ret(a.deg()-1);
for(ri i=0;i<=ret.deg();++i)ret[i]=mul(a[i+1],i+1);
return ret;
}
inline poly poly_inter(const poly&a){
poly ret(a.deg()+1);
for(ri i=1;i<=ret.deg();++i)ret[i]=mul(a[i-1],Inv[i]);
return ret;
}
inline poly poly_ln(poly a,const int&k){
poly ret=a.poly_direv(a);
return ret=(ret*a.poly_inv(a,k)).extend(k),ret.poly_inter(ret);
}
};
int main(){
n=read(),Inv.resize(n*2+1),fac.resize(n*2+1),ifac.resize(n*2+1),Inv[1]=1,fac[0]=fac[1]=ifac[0]=1;
for(ri i=2;i<=n*2;++i)Inv[i]=mul(Inv[mod%i],mod-mod/i),fac[i]=mul(fac[i-1],i);
for(ri i=1;i<=n*2;++i)ifac[i]=mul(Inv[i],ifac[i-1]);
poly a(n);
a[0]=a[1]=1;
for(ri i=2;i<=n;++i)a[i]=mul(ksm(2,(ll)i*(i-1)/2),ifac[i]);
int len=1;
while(len<=n)len<<=1;
a=a.poly_ln(a,len);
cout<<mul(a[n],fac[n]);
exit(0);
return 0;
}
2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)的更多相关文章
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- BZOJ3456 城市规划(多项式求逆)
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...
- BZOJ3456 城市规划 【多项式求逆】
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- [bzoj3456]城市规划:多项式,分治
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...
- 001-电脑操作规范-2019年03月.doc
001-电脑操作规范-2019年03月.doc 本文作者:徐晓亮 BoAi 作者腾讯QQ号码:595076941 /////////////////////////////////////// ...
- 黑洞有毛 or 黑洞无毛:4星|《环球科学》2019年03月号
<环球科学>2019年03月号 高水平的科普杂志.本期我感兴趣的话题有: 1:65岁以上老年人是转发假新闻的主力: 2:人的面孔特征可以通过50个维度来定义: 3:华裔科学家发现人脑颞叶中 ...
随机推荐
- Shell教程 之函数
1.函数定义 shell中函数的定义格式如下: [ function ] funname [()] { action; [return int;] } 说明: 可以带function fun() 定义 ...
- Visual C++ 6.0 创建C语言程序
1 文件-->新建-->”文件“选项卡-->C++ Source File. 2 输入文件名.选择文件位置,点击确定,弹出编辑器窗口. 3 在编辑器窗口中,输入C程序代码,然后保存. ...
- Json、JavaBean、String等互转
Json.JavaBean.String等互转 本文介绍简单的Json.JavaBean.String互换(下文JavaBean简称Object对象,这里不是很严谨) 转换关系如下: 其中String ...
- Extjs如何添加多个Vtype
http://devjs.eu/en/multiple-validation-multi-vtype-for-textfield-in-ext-js-4/
- SQL Server 数据库备份还原常用SQL语句及注意
1.备份数据库 backup database db_name to disk='d:\db_name.bak' with format --通过使用with format可以做到覆盖任何现有的备份和 ...
- 统计sql
查询统计信息 select * from user_tab_statistics t where t.TABLE_NAME=upper('tablename'); 查询表基本信息 select * f ...
- hangfire enqueued but not processing(hangfire 定时任务入队列但不执行)
不生效的方法 //RecurringJob.AddOrUpdate<FamilyAppService>((s) => s.UpdateFamilyLevel(), input.Cro ...
- PAT 1067 试密码(20)(代码)
1067 试密码(20 分) 当你试图登录某个系统却忘了密码时,系统一般只会允许你尝试有限多次,当超出允许次数时,账号就会被锁死.本题就请你实现这个小功能. 输入格式: 输入在第一行给出一个密码(长度 ...
- PAT 1001 害死人不偿命的(3n+1)猜想 (15)(C++&JAVA&Python)
1001 害死人不偿命的(3n+1)猜想 (15)(15 分) 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反 ...
- Android.PackageManager
1. Apk的安装和更新过程是怎样的呢? Ref[1] 2. 在安装.apk程序包时, .so是如何选择并安装的? 这里的选择是指,是如何根据CPU_ABI和CPU_ABI2的值来选择合适的.so的. ...