LINK:方伯伯的OJ

一道稍有质量的线段树题目.不写LCT splay这辈子是不会单独写的 真的!

喜闻乐见的是 题目迷惑选手 \(op==1\) 查改用户在序列中的位置 题目压根没说位置啊 只有排名和编号 LOJ上写的是 用户在排名中的位置.

这说的不就是排名么.

至此四个操作 分别为 修改编号查排名 查排名修改排名为第一位 查排名修改排名到最后一位 查排名为k的编号.

splay的做法 大概是分裂splay和动态开点splay 很好都不会.

直接考虑线段树 因为可以注意到操作只有1e5个 而修改排名每次只不过把某个编号的排名放到前面或者后面 这个可以看成修改.

在前面和后面分别开1e5个位置即可.

考虑第一个操作 修改编号查排名 对于编号x 先查排名 我们需要知道的是 x在编号在线段树的位置.

这个可以利用map 但是我用的hash比map更舒服一点.然后线段树上直接查即可.

考虑修改 还是先把x的位置找到 然后进行修改什么的.

最后一个操作 线段树上二分 然后就能找到位置了 不过值得注意的是 要通过位置找编号 再来一个hash就做完了.

跑的飞快.hash果然比map香

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define l(x) t[x].l
#define r(x) t[x].r
#define sum(p) t[p].sum
#define zz p<<1
#define yy p<<1|1
#define M 1000003
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const int MAXN=100010;
int n,m,ans,id,rt;
int s1,s2,s3,s4;
struct wy
{
int l,r;
int sum;
}t[MAXN*100];
struct jl
{
int lin[M],ver[M],nex[M],v[M],len;
inline int find(int x)
{
int key=(ll)x*x%M;
go(key)if(ver[i]==x)return v[i];
return x+100000;
}
inline int find1(int x)
{
int key=(ll)x*x%M;
go(key)if(ver[i]==x)return v[i];
return x-100000;
}
inline void insert(int x,int y)
{
int key=(ll)x*x%M;
go(key)if(ver[i]==x){v[i]=y;return;}
ver[++len]=x;v[len]=y;nex[len]=lin[key];lin[key]=len;
}
}H,W;
inline void modify(int &p,int l,int r,int L,int R)
{
if(!p)p=++id;
if(l==r)return ++sum(p),void();
int mid=(l+r)>>1;
if(L<=mid)modify(l(p),l,mid,L,R);
if(R>mid)modify(r(p),mid+1,r,L,R);
sum(p)=sum(l(p))+sum(r(p));
}
inline int ask(int p,int l,int r,int L,int R)
{
if(!p)return 0;
if(L<=l&&R>=r)return sum(p);
int mid=(l+r)>>1;
if(R<=mid)return ask(l(p),l,mid,L,R);
if(L>mid)return ask(r(p),mid+1,r,L,R);
return ask(l(p),l,mid,L,R)+ask(r(p),mid+1,r,L,R);
}
inline void change(int &p,int l,int r,int x,int w)
{
if(!p)p=++id;
if(l==r)return sum(p)=w,void();
int mid=(l+r)>>1;
if(x<=mid)change(l(p),l,mid,x,w);
else change(r(p),mid+1,r,x,w);
sum(p)=sum(l(p))+sum(r(p));
}
inline int ask(int &p,int l,int r,int x)
{
if(!p)p=++id;
if(l==r)return l;
int mid=(l+r)>>1;
if(mid-l+1-sum(l(p))>=x)return ask(l(p),l,mid,x);
return ask(r(p),mid+1,r,x-(mid-l+1-sum(l(p))));
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
s1=1;s2=100000;
s3=n+100001;s4=n+200000;
modify(rt,1,s4,s1,s2);
modify(rt,1,s4,s3,s4);
rep(1,m,i)
{
int get(op),get(x)-ans;
if(op==1)
{
int get(y)-ans;
int ww=H.find(x);
H.insert(y,ww);
W.insert(ww,y);
put(ans=(ww-ask(rt,1,s4,1,ww)));
}
if(op==2)
{
int ww=H.find(x);
put(ans=(ww-ask(rt,1,s4,1,ww)));
change(rt,1,s4,ww,1);
change(rt,1,s4,s2,0);
W.insert(s2,x);
H.insert(x,s2);--s2;
}
if(op==3)
{
int ww=H.find(x);
put(ans=(ww-ask(rt,1,s4,1,ww)));
change(rt,1,s4,ww,1);
change(rt,1,s4,s3,0);
W.insert(s3,x);
H.insert(x,s3);++s3;
}
if(op==4)put(ans=W.find1(ask(rt,1,s4,x)));
}
return 0;
}

luogu P3285 [SCOI2014]方伯伯的OJ splay 线段树的更多相关文章

  1. 洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树

    洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户 ...

  2. BZOJ 3595: [Scoi2014]方伯伯的Oj Splay + 动态裂点 + 卡常

    Description 方伯伯正在做他的Oj.现在他在处理Oj上的用户排名问题. Oj上注册了n个用户,编号为1-”,一开始他们按照编号排名.方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和 ...

  3. 洛谷 P3285 - [SCOI2014]方伯伯的OJ(平衡树)

    洛谷题面传送门 在酒店写的,刚了一整晚终于调出来了-- 首先考虑当 \(n\) 比较小(\(10^5\) 级别)的时候怎么解决,我们考虑将所有用户按排名为关键字建立二叉排序树,我们同时再用一个 map ...

  4. 洛谷 P3285 [SCOI2014]方伯伯的OJ

    看到这题,第一眼:平衡树水题,随便做一做好了 然后....我在花了n个小时去调试(维护平衡树父节点)之后,... 调了三个小时后,第一次失败的代码(只能查找排名为k的用户编号,不能根据编号查排名) # ...

  5. BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap

    3595: [Scoi2014]方伯伯的Oj Time Limit: 6 Sec  Memory Limit: 256 MBSubmit: 102  Solved: 54[Submit][Status ...

  6. bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Sta ...

  7. 洛谷 P3285 / loj 2212 [SCOI2014] 方伯伯的 OJ 题解【平衡树】【线段树】

    平衡树分裂钛好玩辣! 题目描述 方伯伯正在做他的 OJ.现在他在处理 OJ 上的用户排名问题. OJ 上注册了 \(n\) 个用户,编号为 \(1\sim n\),一开始他们按照编号排名.方伯伯会按照 ...

  8. [Scoi2014]方伯伯的OJ(动态开点splay)

    开始没看数据范围差点以为是这题了:https://www.cnblogs.com/hfctf0210/p/10911340.html 然后看到n<=1e8,怎么这么大? 所以这题需要用动态开点线 ...

  9. [SCOI2014]方伯伯的OJ(线段树)

    方伯伯正在做他的Oj.现在他在处理Oj上的用户排名问题.Oj上注册了n个用户,编号为1-n“,一开始他们按照编号排名. 方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号: 1.操作格式为 ...

随机推荐

  1. 每日一题 - 剑指 Offer 44. 数字序列中某一位的数字

    题目信息 时间: 2019-07-01 题目链接:Leetcode tag: 规律 难易程度:中等 题目描述: 数字以0123456789101112131415-的格式序列化到一个字符序列中.在这个 ...

  2. WireGuard 教程:WireGuard 的工作原理

    原文链接:https://fuckcloudnative.io/posts/wireguard-docs-theory/ WireGuard 是由 Jason Donenfeld 等人用 C 语言编写 ...

  3. 四维DP之方格取数

    题目描述 传送门 设有N*N的方格图(N<=20,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): 某人从图的左上角的A(1,1) 点出发,可以向下行走,也可 ...

  4. NIVIDIA Tegra K1 QWT安装使用问题和解决办法

    在Linux系统下,Tegra K1(ARM体系),只有QtCreator的环境下,去安装Qwt6.1.0: 下载: 系统安装好之后,直接联网在系统自带的软件安装程序中搜索Qt,安装Qt5.2.1,之 ...

  5. vs遇到的字符串问题

    原以为自己的字符串已经理解不错了, 今天又被vs搞了. 情景就不说了, 直接说结果: 有两种情况 1 当文件是存储为gbk或者utf-8的时候, 中文字符存储永远是gbk的值. ‘按’字的gbk编码 ...

  6. php批量 下载图片

    <?php set_time_limit(0); $file = fopen("index.csv",'r');$temp = [];$i=0;$firstsku='';wh ...

  7. Maven 专题(九):后记

    尚硅谷视频链接:https://www.bilibili.com/video/av84877781/看视频的时候,根据自己的需要,访问量多的不一定是好的,适合自己的才是最好的,总的来说,尚硅谷的视频质 ...

  8. Django之重写用户模型

    django——重写用户模型 Django内建的User模型可能不适合某些类型的项目.例如,在某些网站上使用邮件地址而不是用户名作为身份的标识可能更合理. 1.修改配置文件,覆盖默认的User模型 D ...

  9. Django框架10 /sweetalert插件、django事务和锁、中间件、django请求生命周期

    Django框架10 /sweetalert插件.django事务和锁.中间件.django请求生命周期 目录 Django框架10 /sweetalert插件.django事务和锁.中间件.djan ...

  10. Appium+Python3环境搭建,其实超简单!【软件测试教程】

    appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是appium+python, ...