一、numpy“通用函数”(ufunc)包括以下几种:

  1. 元素级函数(一元函数):对数组中的每个元素进行运算
  2. 数组级函数:统计函数,像聚合函数(例如:求和、求平均)
  3. 矩阵运算
  4. 随机生成函数
常用一元通用函数、数组级函数
函数名 作用 例子 结果

np.abs()、sum()、mean()

std()、var()

计算绝对值、求和、求平均值

求标准差、方差

arr = np.array([1,2,-3,-4,5])

np.abs(arr)

array([1, 2, 3, 4, 5])

np.min()、max()、

argmin ()、argmax()

最小值、最大值、

最小值索引、最大值索引

arr = np.array([1.1,2.2,-3.3])
np.argmin(arrr)

2
np.square() 计算各元素的平方

arr = np.array([1,2,-3,-4,5])

np.square(arr)

array([ 1,  4,  9, 16, 25], dtype=int32)
 np.sqrt() 计算各元素的平方根 

arr = np.array([1,2,4,5])

np.sqrt(arr)

array([1.        , 1.41421356, 2.        , 2.23606798])
 np.exp() 计算各元素以e为底的指数(ex) 

arr = np.array([1,2,4,5])

np.exp(arr)

 array([  2.71828183,   7.3890561 ,  54.59815003, 148.4131591 ])

np.log()、

log10()、log2()

 计算以e、10、2为底的对数 arr = np.array([10,100,1000])
np.log10(arr)
 array([1., 2., 3.])
 np.sign()

返回各元素的正负号:

1(正数)、0(零)、-1(负数)

arr = np.array([1,2,-3,-4,5,0])

np.sign(arr)

 array([ 1,  1, -1, -1,  1,  0])
 np.sort()

对数组进行排序(默认升序)

多维数组可以在单个轴上进行排序

 arr = np.array([1,2,-3,-4,5,0])

np.sort(arr)

 array([-4, -3,  0,  1,  2,  5])
 np.unique()

去重--->结果默认升序排列

同python中的集合set()

arr = np.array([1,2,-3,2,1,0])

arr.unique()

 array([-3,  0,  1,  2])
 np.ceil()  向上取整 arr = np.array([1.1,2.2,-3.3])
np.ceil(arr)
 array([ 2.,  3., -3.])
 floor() 向下取整 arr = np.array([1.1,2.2,-3.3])
np.floor(arr)
 array([ 1.,  2., -4.])
 np.rint() 四舍五入  arr = np.array([1.1,2.2,-3.3])
np.rint(arr)
 array([ 1.,  2., -3.])
 np.modf() 小数和整数分离  arr = np.array([1.1,2.2,-3.3])
np.modf(arr)
 (array([ 0.1,  0.2, -0.3]), array([ 1.,  2., -3.]))
np.sin()、cos()、tan() 正弦、余弦、正切 同上  
np.cumsum() 求数组元素累计和 arr = np.array([1,2,3])
np.cumsum(arr)
array([1, 3, 6], dtype=int32)
np.cumprod() 求数组元素的累积积 arr = np.array([1,2,3])
np.cumprod(arr)
array([1, 2, 6], dtype=int32)

二、numpy.linalg模块包括许多矩阵运算

常用的有:

函数名 作用 例子 结果
np.diag()

返回矩阵的主对角线元素,

若输入一维数组则返回对角矩阵

arr=np.array([[1,2,3],[2,2,3],[3,5,1]])
np.diag(arr)
array([1, 2, 1])
np.trace() 计算对角线元素之和 np.trace(arr) 4
np.linalg.det() 计算矩阵的行列式 np.linalg.det(arr) 12.999999999999995
np.linalg.inv() 计算矩阵的逆 np.linalg.inv(arr) array([[-1.00000000e+00,  1.00000000e+00, -9.25185854e-18],
       [ 5.38461538e-01, -6.15384615e-01,  2.30769231e-01],
       [ 3.07692308e-01,  7.69230769e-02, -1.53846154e-01]])
np.dot() 矩阵点乘 arr2 = np.array([[1,2],[2,3],[3,4]])
np.dot(arr,arr2)
array([[14, 20],
       [15, 22],
       [16, 25]])

三、numpy.random模块包括许多生成随机数的函数

常用的有:

函数名 作用 例子 结果
np.random.rand() 产生(0,1)均匀分布的随机数 arr = np.random.rand(2,2) array([[0.28576059, 0.87691219],
          [0.98174158, 0.37963998]])
np.random.randint()

从给定上下限范围内随机选取整数

(默认是0-1之间)

arr = np.random.randint(0,5,size=(2,2)) array([[4, 3],
       [2, 1]])
np.random.binomial()

产生二项分布的随机数,

有两个参数:n、p;且可用size指定形状

arr=np.random.binomial(20,0.3) 7
np.random.normal()

产生正态分布的随机数

有两个参数:均值μ、标准差σ;且可用size指定形状

arr = np.random.normal(0,0.4,size=(2,2))

 array([[ 0.19689244,  0.1862919 ],
       [ 0.5238639 ,  0.22638041]])
np.random.randn()

产生标准正态分布的随机数

即均值μ=0、标准差σ=1

 arr = np.random.randn(2,3)  array([[ 0.25079709, -0.35966478, -1.28589538],
       [-1.02478972, -0.2292332 , -1.40625537]])
np.random.seed()

确定随机数生成的种子,让生成随机数的过程可重现(不设置seed时,每次生成的随机数将不同)

np.random.seed(5)
np.random.rand(2,2)

np.random.seed(5)
np.random.rand(2,3)

array([[0.22199317, 0.87073231],
       [0.20671916, 0.91861091]])

array([[0.22199317, 0.87073231, 0.20671916],
       [0.91861091, 0.48841119, 0.61174386]])

1-Numpy的通用函数(ufunc)的更多相关文章

  1. numpy之通用函数ufunc

    通用函数-元素级数组函数 通用函数(ufunc)是一种对ndarray执行元素级运算的函数. 一元ufunc import numpy as np arr = np.arange(-10,10,2) ...

  2. 初探numpy——numpy常用通用函数

    numpy通用函数 快速的逐元素数组函数,也可以称为ufunc,对ndarray数据中的元素进行逐元素操作的函数 一元通用函数 函数名 描述 abs.fabs 取绝对值 sqrt 计算平方根,等同于a ...

  3. Numpy 的通用函数:快速的元素级数组函数

    通用函数: 通用函数(ufunc)是一种对ndarray中的数据执行元素级运算的函数.你可以将其看作简单函数(接受一个或多个标量值,并产生一个或度过标量值)的矢量化包装器. 简单的元素级变体,如sqr ...

  4. numpy的通用函数:快速的元素级数组函数

    通用函数(ufunc)是对ndarray中的数据执行元素级运算的函数.可看作简单函数的矢量化包装. 一元ufunc sqrt对数组中的所有元素开平方 exp对数组中的所有元素求指数 In [93]: ...

  5. numpy 的通用函数

    1 CSV文件 CSV,Comma Separate Values,是逗号分隔文件的缩写,是一种存储数据的纯文本格式,通常用于存储电子表格或数据库软件 特点 每条记录占一行 以逗号为分隔符 逗号前后的 ...

  6. numpy的通用函数

    通用函数:快速的元素级数组函数 通用函数是一种对ndarry中的数据执行元素级运算的函数,可以看作是简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器. 一元func: abs丶f ...

  7. numpy通用函数

    numpy的通用函数可以对数组进行向量化操作,可以提高数组元素的重复计算的效率. 一.numpy的算数运算符都是对python内置符的封装 算数运算符 >>> import nump ...

  8. NumPy的详细教程

    原文  http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...

  9. 学习笔记之NumPy

    NumPy — NumPy http://www.numpy.org/ NumPy is the fundamental package for scientific computing with P ...

随机推荐

  1. 打包发布 Qt Quick/Widgets 程序

    使用的QT自带的部署工具(windeployqt.exe,路径QT安装路径),版本替换debug/release Qt Quick "C:\Qt\Qt5.8.0\5.8\mingw53_32 ...

  2. cf1216E2 Numerical Sequence (hard version)(思维)

    cf1216E2 Numerical Sequence (hard version) 题目大意 一个无限长的数字序列,其组成为\(1 1 2 1 2 3 1.......1 2 ... n...\), ...

  3. 手写一个React-Redux,玩转React的Context API

    上一篇文章我们手写了一个Redux,但是单纯的Redux只是一个状态机,是没有UI呈现的,所以一般我们使用的时候都会配合一个UI库,比如在React中使用Redux就会用到React-Redux这个库 ...

  4. networkX.core_number(graph)

    今天在学习别人特征工程的时候,看到这样一个函数,max_kcore = pd.DataFrame(list(nx.core_number(graph).items()), columns=[" ...

  5. MySQL基础架构分析

    文章已托管到GitHub,大家可以去GitHub查看阅读,欢迎老板们前来Star! 搜索关注微信公众号 码出Offer 领取各种学习资料! MySQL基础架构 一.引言 我们在学习MySQL的时候,迈 ...

  6. Sympy常用函数总结

    基础 from sympy import * 数学格式输出: init_printing() 添加变量: x, y, z, a, b, c = symbols('x y z a b c') 声明分数: ...

  7. 【一起学系列】之命令模式:封装一个简单Jedis

    意图 将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化:对请求排队或记录请求日志,以及支持可撤销的操作. 命令模式的诞生 [产品]:开发小哥,来活啦,咱们需要设计一款遥控器,核心功能就 ...

  8. Web Scraping using Python Scrapy_BS4 - Introduction

    What is Web Scraping This is also referred to as web harvesting and web data extraction. This is the ...

  9. Ethical Hacking - NETWORK PENETRATION TESTING(1)

    Pre--Connection-Attacks that can be done before connecting to the network. Gaining Access - How to b ...

  10. Ubuntu18.04安装GitLab搭建私有仓库服务器过程笔记

      百度了很多资料结果折腾很久还没安装成功,索性就直接上官网找文档参考顺利搭建完成 因为有2台服务器做练习,总结了2种安装方式提供参考:第一种官网安装方式,第二种国内镜像安装方式(建议采用第二种) 第 ...