P1220 关路灯

题目描述

某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为 \(1m/s\),每个路灯的位置(是一个整数,即距路线起点的距离,单位:\(m\))、功率(\(W\)),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入格式

第一行是两个数字 \(n\)(表示路灯的总数)和 \(c\)(老张所处位置的路灯号);

接下来 \(n\) 行,每行两个数据,表示第 \(1\) 盏到第 \(n\) 盏路灯的位置和功率。数据保证路灯位置单调递增。

输出格式

一个数据,即最少的功耗(单位:\(J\),\(1J=1W\times s\))。

输入输出样例

输入

5 3
2 10
3 20
5 20
6 30
8 10

输出

270

说明/提示

样例解释

此时关灯顺序为 \(3,4,2,1,5\)。

数据范围

\(1\leq n\leq 50\),\(1\leq c\leq n\)。

思路

首先这是一个线性的路径,如果只是一个简单的线性 \(dp\),不好存储,所以考虑区间 \(dp\)。

当老张关完 \(i\) 到 \(j\) 的灯后,会处在 \(i\) 和 \(j\) 哪个位置呢,所以在加一维,用来表示老张所处的位置。

用 \(dp[i][j][0]\) 表示当老张关完 \(i\) 到 \(j\) 的灯后,处在 \(i\) 的位置。

用 \(dp[i][j][1]\) 表示当老张关完 \(i\) 到 \(j\) 的灯后,处在 \(j\) 的位置。

这样就可以推出动态转移方程:

\(dp[i][j][0]=min(dp[i+1][j][0]+Time(i,i+1,i,j+1),dp[i+1][j][1]+Time(i,j,i,j+1))\)

表示老张从 \(i+1\) 的位置到 \(i\) 的位置,和老张从 \(j\) 的位置到 \(i\) 的位置,并加上途中其他路灯所耗费的电,取最小值即可。

\(dp[i][j][1]=min(dp[i][j-1][0]+Time(i,j,i-1,j),dp[i][j-1][1]+Time(j-1,j,i-1,j))\)

表示老张从 \(j-1\) 的位置到 \(j\) 的位置,和老张从 \(i\) 的位置到 \(j\) 的位置,并加上途中其他路灯所耗费的电,取最小值即可。

代码

#include <bits/stdc++.h>
using namespace std; const int maxn=1000+50;
int n,k;
struct Node{
int d,w;
}e[maxn];
int sum[maxn];
int dp[maxn][maxn][2]; int Cala(int i1,int j1,int i0,int j0){//计算途中其他未关的路灯所耗费的电量
return (e[j1].d-e[i1].d)*(sum[i0]+sum[n]-sum[j0-1]);
}
int main(){
memset(dp,0x3f,sizeof(dp));//初始为最大
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d%d",&e[i].d,&e[i].w);
sum[i]=sum[i-1]+e[i].w;//记录前缀和
}
dp[k][k][1]=0;//初始化
dp[k][k][0]=0;
for(int d=2;d<=n;d++){
for(int i=1,j;(j=i+d-1)<=n;i++){
dp[i][j][0]=min(dp[i+1][j][0]+Cala(i,i+1,i,j+1),dp[i+1][j][1]+Cala(i,j,i,j+1));
dp[i][j][1]=min(dp[i][j-1][1]+Cala(j-1,j,i-1,j),dp[i][j-1][0]+Cala(i,j,i-1,j));
}
}
printf("%d\n",min(dp[1][n][1],dp[1][n][0]));//两种情况取最小值
return 0;
}

P1220 关路灯——区间dp的更多相关文章

  1. P1220 关路灯 区间dp

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  2. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

  3. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  4. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  5. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  6. luogu1220_关路灯 区间dp

    传送门 区间dp f[i][j][state] : [i, j]区间 state=0 当前选i state = 1 当前选j 注意枚举的顺序 转移的设计时 在同时刻不在[i,j]区间里的数也要考虑 不 ...

  7. luogu 1220 关路灯 区间dp

    Code: #include <bits/stdc++.h> #define ll long long #define N 1003 #define setIO(s) freopen(s& ...

  8. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  9. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

随机推荐

  1. python3 主机实时监控系统

    主机实时监控系统(可在局域网访问) 一.思路: 前端: 1.管理员登录(编写一个管理员登录界面) 技术:html+css 2.资源数据显示(用于显示主机资源数据情况) 插件:echarts+jquer ...

  2. set基本运用

    /* set集合基本用法 */ #include<iostream> #include<set> using namespace std; //set<T>a; v ...

  3. C# 反射详解一

    首先反射是基于System.Reflection命名空间下,.Net框架提供的帮助类库,可以读取并使用metadata(元数据:描述对象信息的数据). 我们再来看下代码生成编译的总过程. 编译器编译( ...

  4. 你真的了解EF吗?关于EntityFramework的高级优化

    接上一篇文章.现在写程序,做项目不是说功能做完就完事了,在平常的开发过程中对于性能的考虑也是极其重要的. 关于ef的那些事,今天就来说说吧.首先必须得知道.net ef在程序中的五种状态变化过程与原理 ...

  5. Dubbo+Zookeeper集群案例

    一.开源分布式服务框架 1.Dubbo是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,可以Spring框架无缝集成.    Dubbo是一款高性 ...

  6. 带你轻松了解C# Lock 关键字

    相信绝大多数.NET玩家和我一样,常常使用Timer这个对象,而在WPF中使用DispatcherTimer的人也是很多,DispatcherTimer是在UI线程跑的.我们的程序中大多数都会充斥很多 ...

  7. matlab实现梯度下降法(Gradient Descent)的一个例子

    在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \ ...

  8. php配置文件

    mysql的配置文件是 my.iniphp配置文件是 php.iniThinKPHP配置文件 config.phpApche配置文件 httpd-confThinkPHP的运行,开启调试模式配置为 a ...

  9. cb05a_c++_STL优先级队列priority_queue_less_greater

    /*cb05a_c++_STL优先级队列priority_queue自适应容器(容器适配器):不能使用list,list不能使用随机操作最大值优先级队列,//把数据放在队列里面是,最大的始终都是放在最 ...

  10. 13.实战交付一套dubbo微服务到k8s集群(6)之交付dubbo服务的消费者集群到K8S

    构建dubbo-demo-consumer,可以使用和dubbo-demo-service的流水线来构建 1.登录jenkins构建dubbo-demo-consumer  2.填写构建dubbo-d ...