Dictum:



 A man who is willing to be a slave, who does not know the power of freedom. -- Beck


动态规划(Dynamic Programming, DP)是基于模型的方法,即在给定一个利用MDP描述的完备的环境模型下可以计算出最优策略的优化算法。

DP的两种性质:1.最优子结构:问题的最优解法可以被分为若干个子问题;2.重叠子问题:子问题之间存在递归关系,解法是可以被重复利用的。在强化学习中,MDP满足两个性质,DP的关键思想就是利用价值函数组织并结构化对好的策略的搜索。

策略评估

策略评估(Policy Evaluation)也被称为“预测问题”,就是计算任意一个随机策略\(\pi\)的状态价值函数\(v_\pi\)的问题。

在MDP中,由公式\((2.11)\)最终得到了状态价值函数的贝尔曼方程:\(v_ \pi(s)=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_\pi(s^\prime)]\),该方程可以通过迭代法求解,方法如下:

  1. 将状态价值函数序列记为\(\left\{ v_0,v_1,...,v_k\right\}\)
  2. \(v_0\)作为初始状态价值函数,任意取值(在终止状态时,取值必须为0)
  3. 通过下面的公式进行迭代$$v_{k+1}=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_k(s^\prime)] \tag{3.1}$$

序列\(\left\{v_k\right\}\)在\(k \rightarrow \infty\)时将收敛于\(v_\pi\)。该方法需要两个数组:一个用于存储旧的\(v_k(s)\),另一个用于存储新的\(v_{k+1}(s)\)。也可以每次直接用新状态价值函数替换旧状态价值函数,这就是"in-place"更新。

价值迭代

上述的策略评估方法是一个多次遍历状态集合的迭代过程,因此,可以通过价值迭代(Value Iteration)来缩短策略评估的步骤,公式如下:

\[\begin{aligned}
v_{k+1}(s)
& \doteq \max_a \mathbb{E}[R_{t+1}+ \gamma v_k(S_{t+1}|S_t=s,A_t=a)] \\
&=\max_a \displaystyle \sum_{s^\prime,r}p(s^\prime,r|s,a)[r+\gamma v_k(s^\prime)]
\end{aligned} \tag{3.2}
\]

通过公式\((3.2)\)可以在一次遍历后立即停止策略评估,只需要对每个状态更新一次,从而提升计算效率。

策略改进

通过策略评估得出策略的状态价值函数,可以根据策略改进定理(policy improvement theorem)选择出贪心策略:

对于任意两个确定策略\(\pi\)和\(\pi^\prime\),\(\forall s \in \mathcal{S},q_\pi(s,\pi^\prime(s)) \geq v_\pi(s)\),则策略\(\pi^\prime\)不劣于\(\pi\)。

在这种情况下,\(v_{\pi^\prime}(s) \geq v_\pi(s)\)。证明过程如下

\[\begin{aligned}
v_{\pi}(s)
& \leq q_{\pi}\left(s, \pi^{\prime}(s)\right) \\
&=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=\pi^{\prime}(a)\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma \mathbb{E}_{\pi^{\prime}}\left[R_{t+2}+\gamma v_{\pi}\left(S_{t+2}\right)\right] | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} v_{\pi}\left(S_{t+2}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} v_{\pi}\left(S_{t+3}\right) | S_{t}=s\right] \\
& \qquad \vdots \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots | S_{t}=s\right] \\
&=v_{\pi^{\prime}}(s)
\end{aligned} \tag{3.3}
\]

由此,可以推出贪心策略\(\pi^\prime\),满足

\[\begin{aligned}
\pi^{\prime}(s)
& \doteq \underset{a}{\arg \max } q_{\pi}(s, a) \\
&=\underset{a}{\operatorname{argmax}} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned} \tag{3.4}
\]

同时,可以写出它的状态价值函数:

\[\begin{aligned}
v_{\pi^{\prime}}(s)
&=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi^{\prime}}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi^{\prime}}\left(s^{\prime}\right)\right] \\
&=v_*(s)
\end{aligned} \tag{3.5}
\]

策略迭代

通过下面的链式方法,可以得到一个不断改进的策略和状态价值函数的序列:

\[\pi_{0} \stackrel{E}{\longrightarrow} v_{\pi_{0}} \stackrel{I}{\longrightarrow} \pi_{1} \stackrel{E}{\longrightarrow} v_{\pi_{1}} \stackrel{I}{\longrightarrow} \pi_{2} \stackrel{E}{\longrightarrow} \cdots \stackrel{I}{\longrightarrow} \pi_{*} \stackrel{E}{\longrightarrow} v_{*}
\]

\(\stackrel{E}{\longrightarrow}\)表示策略评估,\(\stackrel{I}{\longrightarrow}\)表示策略改进,每一次的策略评估都是一个迭代计算的过程,需要基于前一个策略的状态价值函数开始计算。


由上图可知,策略迭代(Policy Iteration)是通过策略评估和策略改进不断交互,使策略和状态价值函数最终收敛为最优。

异步动态规划

上述的都是同步动态规划(Synchronous Dynamic Programming),它们的缺点是需要对MDP的整个状态集进行遍历。异步动态规划(Asynchronous Dynamic Programming)使使用任意可用的状态值,以任意规则进行更新,为了确保能够正确收敛,异步动态规划必须不断更新所有状态的值。


References

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second Edition). 2018.

Csaba Szepesvári. Algorithms for Reinforcement Learning. 2009.

Course: UCL Reinforcement Learning Course (by David Silver)

Ⅲ Dynamic Programming的更多相关文章

  1. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  2. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  3. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  4. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

  6. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  7. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  8. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  10. Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical

    http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...

随机推荐

  1. 我的Python自学之路-002 字典的知识

    '''字典是python中唯一的验证类型,采用键值对(key-value)的形式存储数据.python对key进行哈希函数运算.根据计算的结果决定value的存储地址.所以字典是无序存储的.且key必 ...

  2. Java审计之文件操作漏洞

    Java审计之文件操作漏洞篇 0x00 前言 本篇内容打算把Java审计中会遇到的一些文件操作的漏洞,都给叙述一遍.比如一些任意文件上传,文件下载,文件读取,文件删除,这些操作文件的漏洞. 0x01 ...

  3. lombok使用(给自己看的,只为不要忘记自己用过的技术)

    如何使用? 一.1)eclipse使用方法 1. 从项目首页下载lombok.jar 2. 双击lombok.jar, 将其安装到eclipse中(该项目需要jdk1.6+的环境) 2)idea使用方 ...

  4. python条件控制语句要注意什么?本文详解

    1.条件判断语句(if语句) 执⾏的流程:if语句在执⾏时,会先对条件表达式进⾏求值判断, 如果为True,则执⾏if后的语句 如果为False,则不执⾏ 语法: if 条件表达式 : 代码块 代码块 ...

  5. 从SpringBoot源码看资源映射原理

    前言 很多的小伙伴刚刚接触SpringBoot的时候,可能会遇到加载不到静态资源的情况. 比如html没有样式,图片无法加载等等. 今天王子就与大家一起看看SpringBoot中关于资源映射部分的主要 ...

  6. 什么是 Opcache,如何使用 Opcache

    Opcode 是啥? 我们先看一下 PHP 的执行过程: PHP 初始化执行环节,启动 Zend 引擎,加载注册的扩展模块. 初始化后读取 PHP 脚本文件,Zend 引擎对 PHP 文件进行词法分析 ...

  7. Win10系统下的MySQL5.7.24版本(解压版)详细安装教程

    进入MySQL官网下载压缩包 MySQL官网:https://www.mysql.com/ 将页面拉到最底,点击MySQL Community Server 跳转到下载页面,默认选择是最新版MySQL ...

  8. 【题解】NOIP2018 旅行

    题目戳我 \(\text{Solution:}\) 首先题目描述有一点不准确:回头是必须要走完一条路无路可走的时候才能返回. 对于树的情况:显然贪心做就完事了. 对于基环树的情况:对于一个\(n\)条 ...

  9. ✅Vue选择图像

    下载 Vue选择图像Vue选择图像 Vue 2.用于从列表中选择图像的组件 演示 https://mazipan.github.io/vue-select-image/ 安装 #纱 纱添加vue-se ...

  10. 《流畅的Python》 第一部分 序章 【数据模型】

    流畅的Python 致Marta,用我全心全意的爱 第一部分 序幕 第一章 Python数据模型 特殊方法 定义: Python解释器碰到特殊句法时,使用特殊方法激活对象的基本操作,例如python语 ...