发现是一道比较裸的树上莫队,于是就开始刚,然后发现好像是最难的一道题……(本题解用于作者加深算法理解,也欢迎各位的阅读)

题意

给你一棵树,树有点权,询问一条路径上是否有点权为 \(c\) 的点。

题解

我们可以比较明显地发现询问是很像莫队的询问处理的,可以 \(O(1)\) 去扩展 \(l\) 和 \(r\) 。但是这题是树,所以我们需要引入欧拉序的概念。

欧拉序其实很像 \(dfs\) 序,但是会在出栈的时候多记录一次,我们可以利用欧拉序来将树上的路径转化为莫队需要的区间问题。

我们可以先画一张图:



其中位于节点右侧的是入栈时间,位于节点左侧的是出栈时间。

我们不妨以每一个点的入栈时间为编号,欧拉序则为:

\[1~2~3~4~4~6~6~3~9~9~11~11~2~14~15~16~16~15~19~20~20~19~14~1
\]

比如对于 \(9\) ~ \(16\) 这一条路径,我们可以用时间 \(10\) ~ \(16\) 来表示,其中出现两次的点我们不进行计算,并且还需要多加上 \(9\) 和 \(16\) 的 \(lca\):\(1\) ,这些可以用异或运算和特判来解决。即路径 \(x\) ~ \(y\):\(lst_x\) ~ \(fir_y\) 。

同时我们可以发现,如果路径上的点是为祖先关系,我们需要特殊处理,可以发现是 \(fir_x\) ~ \(fir_y\) 。

因此我们将所有的路径都转化为区间之后就可以用莫队离线实现了,复杂度 \(O(n\sqrt n)\) 。可是不开 \(O2\) 过不了……

以上。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,M=1e5+5;
int n,m,type[N];
struct Edge{int nxt,to;}e[N<<1];int head[N];
void add(int u,int v,int i){e[i]=Edge{head[u],v},head[u]=i;}
int fir[N],lst[N],dfn[N<<1],cnt_dfn=0;
int dep[N],fa[N][25];
void dfs(int u)
{
dfn[++cnt_dfn]=u,fir[u]=cnt_dfn;
for(int i=head[u];i;i=e[i].nxt)
{
if(e[i].to==fa[u][0]) continue;
fa[e[i].to][0]=u;
dep[e[i].to]=dep[u]+1;
dfs(e[i].to);
}
dfn[++cnt_dfn]=u,lst[u]=cnt_dfn;
}
int lca(int u,int v)
{
if(dep[u]>dep[v]) swap(u,v);
for(int i=20;i>=0;--i)
{
if(dep[fa[v][i]]>=dep[u])
v=fa[v][i];
}
if(u==v) return u;
for(int i=20;i>=0;--i)
{
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
}
return fa[u][0];
}
struct Query{int l,r,lca,c,id;}q[M];
int bel[N<<1],size;
bool cmp(Query a,Query b)
{
if(bel[a.l]^bel[b.l]) return bel[a.l]<bel[b.l];
if(bel[a.l]^1) return a.r<b.r;
return a.r>b.r;
}
int l=1,r=0,tag[N],cnt[N],ans[M];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;++i) scanf("%d",&type[i]);
for(int i=1,u,v;i<n;++i)
{
scanf("%d%d",&u,&v);
add(u,v,i<<1);
add(v,u,i<<1|1);
}
dep[1]=1,dfs(1);
for(int i=1;i<=20;++i)
{
for(int j=1;j<=n;++j)
fa[j][i]=fa[fa[j][i-1]][i-1];
}
size=sqrt(n*2);
for(int i=1,cnt=0;i<=n*2;i+=size)
{
++cnt;
for(int j=i;j<min(i+size,n*2+1);++j)
bel[j]=cnt;
}
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].c),q[i].id=i;
if(fir[q[i].l]>fir[q[i].r]) swap(q[i].l,q[i].r);
q[i].lca=lca(q[i].l,q[i].r);
if(q[i].lca==q[i].l) q[i].l=fir[q[i].l];
else q[i].l=lst[q[i].l];
q[i].r=fir[q[i].r];
}
// for(int i=1;i<=n*2;++i)
// printf("%d ",dfn[i]);
// printf("\n");
sort(q+1,q+1+m,cmp);
// for(int i=1;i<=m;++i)
// printf("%d %d %d\n",q[i].l,q[i].r,q[i].lca);
for(int i=1;i<=m;++i)
{
while(q[i].r>r)
{
tag[dfn[++r]]^=1;
if(tag[dfn[r]]) cnt[type[dfn[r]]]++;
else cnt[type[dfn[r]]]--;
}
while(q[i].r<r)
{
tag[dfn[r]]^=1;
if(tag[dfn[r]]) cnt[type[dfn[r--]]]++;
else cnt[type[dfn[r--]]]--;
}
while(q[i].l>l)
{
tag[dfn[l]]^=1;
if(tag[dfn[l]]) cnt[type[dfn[l++]]]++;
else cnt[type[dfn[l++]]]--;
}
while(q[i].l<l)
{
tag[dfn[--l]]^=1;
if(tag[dfn[l]]) cnt[type[dfn[l]]]++;
else cnt[type[dfn[l]]]--;
}
// printf("$$$%d %d\n",l,r);
// for(multiset<int>::iterator i=st.begin();i!=st.end();++i)
// printf("%d ",*i);
// printf("\n");
ans[q[i].id]=(cnt[q[i].c]||type[q[i].lca]==q[i].c);
}
for(int i=1;i<=m;++i) printf("%d",ans[i]);
printf("\n");
return 0;
}

P5838 [USACO19DEC]Milk Visits G的更多相关文章

  1. 【题解】[USACO19DEC]Milk Visits G

    题目戳我 \(\text{Solution:}\) 这题不要把思想局限到线段树上--这题大意就是求路径经过的值中\(x\)的出现性问题. 最开始的想法是值域线段树--看了题解发现直接\(vector\ ...

  2. P5836 [USACO19DEC]Milk Visits S 从并查集到LCA(最近公共祖先) Tarjan算法 (初级)

    为什么以它为例,因为这个最水,LCA唯一黄题. 首先做两道并查集的练习(估计已经忘光了).简单来说并查集就是认爸爸找爸爸的算法.先根据线索理认爸爸,然后查询阶段如果发现他们的爸爸相同,那就是联通一家的 ...

  3. 洛谷 P5837 [USACO19DEC]Milk Pumping G (单源最短路,dijkstra)

    题意:有一\(n\)个点,\(m\)条边的双向图,每条边都有花费和流量,求从\(1\)~\(n\)的路径中,求\(max\frac{min(f)}{\sum c}\). 题解:对于c,一定是单源最短路 ...

  4. P5837 [USACO19DEC]Milk Pumping G

    题目描述 Farmer John 最近为了扩张他的牛奶产业帝国而收购了一个新的农场.这一新的农场通过一个管道网络与附近的小镇相连,FJ 想要找出其中最合适的一组管道,将其购买并用来将牛奶从农场输送到小 ...

  5. Milk Pumping G&Milk Routing S 题解

    Milk Pumping G&Milk Routing S 双倍经验时间 洛谷P5837 [USACO19DEC]Milk Pumping G 洛谷P3063 [USACO12DEC]Milk ...

  6. 题解 P5837 【[USACO19DEC]Milk Pumping】

    这题其实想法挺简单的,因为他只需要简单的把每个点的花费和流量用dp记下来就好了 1.怎么记: 首先考虑dp的状态.由于所在的点和流量都要记,所以dp开二维,一维记所在的点,另一维记去哪 //dp[i] ...

  7. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  8. USACO19DEC题解

    Bronze A Cow Gymnastics 题目:https://www.luogu.com.cn/problem/P5831 题解:用数组存一下出现位置,O(n^2)枚举一下就好. 代码: #i ...

  9. USACO 2019 December Contest 随记

    Forewords 今年 USACO 的比赛变化挺大的,有部分分了,而且不再是固定十个点了(部分分只说这几个点满足这几个性质,以为十个点的我还高兴了一会,一提交,...),除此之外居然赛后还排名了.这 ...

随机推荐

  1. 1、线性DP 213. 打家劫舍 II

    https://leetcode-cn.com/problems/house-robber-ii/ //rob 0, not rob n-1 || not rob 0,not rob n-1 ==&g ...

  2. Go知识点记录

    1.go中 堆的实现:https://ieevee.com/tech/2018/01/29/go-heap.html#3-containerheap%E5%8F%AF%E4%BB%A5%E7%94%A ...

  3. go语言协程安全map

    前言: 在go语言中 map 是很重要的数据结构.Map 是一种无序的键值对的集合.Map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值.问题来了,这么安逸的 数据结构 ...

  4. linux组管理(groupadd/groupmod/gpasswd/groupdel)

    配置文件:  /etc/group 注:用户组(group)配置文件: /etc/gshadow 注:用户组(group)的影子文件: 查看组: cat /etc/group  或者  id -g t ...

  5. 限流10万QPS、跨域、过滤器、令牌桶算法-网关Gateway内容都在这儿

    一.微服务网关Spring Cloud Gateway 1.1 导引 文中内容包含:微服务网关限流10万QPS.跨域.过滤器.令牌桶算法. 在构建微服务系统中,必不可少的技术就是网关了,从早期的Zuu ...

  6. python 学习代码

    1 #-- 寻求帮助: 2 dir(obj) # 简单的列出对象obj所包含的方法名称,返回一个字符串列表 3 help(obj.func) # 查询obj.func的具体介绍和用法 4 5 #-- ...

  7. mac 快键键图标对应

    Mac 键盘快捷键 您可以按下某些组合键来实现通常需要鼠标.触控板或其他输入设备才能完成的操作.   要使用键盘快捷键,请按住一个或多个修饰键,然后按快捷键的最后一个键.例如,要使用 Command- ...

  8. ABBYY FineReader 15新增智能PDF文档转换功能

    ABBYY FineReader 15(Windows系统)新增智能PDF文档转换功能,可自动检测导入PDF数字文档的文本层质量,确保转变为可编辑格式后的准确结果:从表单字段和文本框中提取文本,准确保 ...

  9. 如何使用Camtasia进行电脑录制屏幕

    在现在的网络互联网时代,越来越多的人走上了自媒体的道路.有些自媒体人会自己在网络上录制精彩视频,也有一些人会将精彩.热门的电影剪辑出来再加上自己给它的配音,做成大家喜欢看的电影剪辑片段.相信不管大家是 ...

  10. jenkins 中邮件发送

    1.安装插件 jenkins中安装邮件插件,选择Email Extension 2.开启smtp服务,每个客户端的设置不一样,下图是qq邮箱,仅供参考 3.设置邮件服务 3.1系统设置 3.2 在任务 ...