发现是一道比较裸的树上莫队,于是就开始刚,然后发现好像是最难的一道题……(本题解用于作者加深算法理解,也欢迎各位的阅读)

题意

给你一棵树,树有点权,询问一条路径上是否有点权为 \(c\) 的点。

题解

我们可以比较明显地发现询问是很像莫队的询问处理的,可以 \(O(1)\) 去扩展 \(l\) 和 \(r\) 。但是这题是树,所以我们需要引入欧拉序的概念。

欧拉序其实很像 \(dfs\) 序,但是会在出栈的时候多记录一次,我们可以利用欧拉序来将树上的路径转化为莫队需要的区间问题。

我们可以先画一张图:



其中位于节点右侧的是入栈时间,位于节点左侧的是出栈时间。

我们不妨以每一个点的入栈时间为编号,欧拉序则为:

\[1~2~3~4~4~6~6~3~9~9~11~11~2~14~15~16~16~15~19~20~20~19~14~1
\]

比如对于 \(9\) ~ \(16\) 这一条路径,我们可以用时间 \(10\) ~ \(16\) 来表示,其中出现两次的点我们不进行计算,并且还需要多加上 \(9\) 和 \(16\) 的 \(lca\):\(1\) ,这些可以用异或运算和特判来解决。即路径 \(x\) ~ \(y\):\(lst_x\) ~ \(fir_y\) 。

同时我们可以发现,如果路径上的点是为祖先关系,我们需要特殊处理,可以发现是 \(fir_x\) ~ \(fir_y\) 。

因此我们将所有的路径都转化为区间之后就可以用莫队离线实现了,复杂度 \(O(n\sqrt n)\) 。可是不开 \(O2\) 过不了……

以上。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,M=1e5+5;
int n,m,type[N];
struct Edge{int nxt,to;}e[N<<1];int head[N];
void add(int u,int v,int i){e[i]=Edge{head[u],v},head[u]=i;}
int fir[N],lst[N],dfn[N<<1],cnt_dfn=0;
int dep[N],fa[N][25];
void dfs(int u)
{
dfn[++cnt_dfn]=u,fir[u]=cnt_dfn;
for(int i=head[u];i;i=e[i].nxt)
{
if(e[i].to==fa[u][0]) continue;
fa[e[i].to][0]=u;
dep[e[i].to]=dep[u]+1;
dfs(e[i].to);
}
dfn[++cnt_dfn]=u,lst[u]=cnt_dfn;
}
int lca(int u,int v)
{
if(dep[u]>dep[v]) swap(u,v);
for(int i=20;i>=0;--i)
{
if(dep[fa[v][i]]>=dep[u])
v=fa[v][i];
}
if(u==v) return u;
for(int i=20;i>=0;--i)
{
if(fa[u][i]!=fa[v][i])
u=fa[u][i],v=fa[v][i];
}
return fa[u][0];
}
struct Query{int l,r,lca,c,id;}q[M];
int bel[N<<1],size;
bool cmp(Query a,Query b)
{
if(bel[a.l]^bel[b.l]) return bel[a.l]<bel[b.l];
if(bel[a.l]^1) return a.r<b.r;
return a.r>b.r;
}
int l=1,r=0,tag[N],cnt[N],ans[M];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;++i) scanf("%d",&type[i]);
for(int i=1,u,v;i<n;++i)
{
scanf("%d%d",&u,&v);
add(u,v,i<<1);
add(v,u,i<<1|1);
}
dep[1]=1,dfs(1);
for(int i=1;i<=20;++i)
{
for(int j=1;j<=n;++j)
fa[j][i]=fa[fa[j][i-1]][i-1];
}
size=sqrt(n*2);
for(int i=1,cnt=0;i<=n*2;i+=size)
{
++cnt;
for(int j=i;j<min(i+size,n*2+1);++j)
bel[j]=cnt;
}
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].c),q[i].id=i;
if(fir[q[i].l]>fir[q[i].r]) swap(q[i].l,q[i].r);
q[i].lca=lca(q[i].l,q[i].r);
if(q[i].lca==q[i].l) q[i].l=fir[q[i].l];
else q[i].l=lst[q[i].l];
q[i].r=fir[q[i].r];
}
// for(int i=1;i<=n*2;++i)
// printf("%d ",dfn[i]);
// printf("\n");
sort(q+1,q+1+m,cmp);
// for(int i=1;i<=m;++i)
// printf("%d %d %d\n",q[i].l,q[i].r,q[i].lca);
for(int i=1;i<=m;++i)
{
while(q[i].r>r)
{
tag[dfn[++r]]^=1;
if(tag[dfn[r]]) cnt[type[dfn[r]]]++;
else cnt[type[dfn[r]]]--;
}
while(q[i].r<r)
{
tag[dfn[r]]^=1;
if(tag[dfn[r]]) cnt[type[dfn[r--]]]++;
else cnt[type[dfn[r--]]]--;
}
while(q[i].l>l)
{
tag[dfn[l]]^=1;
if(tag[dfn[l]]) cnt[type[dfn[l++]]]++;
else cnt[type[dfn[l++]]]--;
}
while(q[i].l<l)
{
tag[dfn[--l]]^=1;
if(tag[dfn[l]]) cnt[type[dfn[l]]]++;
else cnt[type[dfn[l]]]--;
}
// printf("$$$%d %d\n",l,r);
// for(multiset<int>::iterator i=st.begin();i!=st.end();++i)
// printf("%d ",*i);
// printf("\n");
ans[q[i].id]=(cnt[q[i].c]||type[q[i].lca]==q[i].c);
}
for(int i=1;i<=m;++i) printf("%d",ans[i]);
printf("\n");
return 0;
}

P5838 [USACO19DEC]Milk Visits G的更多相关文章

  1. 【题解】[USACO19DEC]Milk Visits G

    题目戳我 \(\text{Solution:}\) 这题不要把思想局限到线段树上--这题大意就是求路径经过的值中\(x\)的出现性问题. 最开始的想法是值域线段树--看了题解发现直接\(vector\ ...

  2. P5836 [USACO19DEC]Milk Visits S 从并查集到LCA(最近公共祖先) Tarjan算法 (初级)

    为什么以它为例,因为这个最水,LCA唯一黄题. 首先做两道并查集的练习(估计已经忘光了).简单来说并查集就是认爸爸找爸爸的算法.先根据线索理认爸爸,然后查询阶段如果发现他们的爸爸相同,那就是联通一家的 ...

  3. 洛谷 P5837 [USACO19DEC]Milk Pumping G (单源最短路,dijkstra)

    题意:有一\(n\)个点,\(m\)条边的双向图,每条边都有花费和流量,求从\(1\)~\(n\)的路径中,求\(max\frac{min(f)}{\sum c}\). 题解:对于c,一定是单源最短路 ...

  4. P5837 [USACO19DEC]Milk Pumping G

    题目描述 Farmer John 最近为了扩张他的牛奶产业帝国而收购了一个新的农场.这一新的农场通过一个管道网络与附近的小镇相连,FJ 想要找出其中最合适的一组管道,将其购买并用来将牛奶从农场输送到小 ...

  5. Milk Pumping G&Milk Routing S 题解

    Milk Pumping G&Milk Routing S 双倍经验时间 洛谷P5837 [USACO19DEC]Milk Pumping G 洛谷P3063 [USACO12DEC]Milk ...

  6. 题解 P5837 【[USACO19DEC]Milk Pumping】

    这题其实想法挺简单的,因为他只需要简单的把每个点的花费和流量用dp记下来就好了 1.怎么记: 首先考虑dp的状态.由于所在的点和流量都要记,所以dp开二维,一维记所在的点,另一维记去哪 //dp[i] ...

  7. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  8. USACO19DEC题解

    Bronze A Cow Gymnastics 题目:https://www.luogu.com.cn/problem/P5831 题解:用数组存一下出现位置,O(n^2)枚举一下就好. 代码: #i ...

  9. USACO 2019 December Contest 随记

    Forewords 今年 USACO 的比赛变化挺大的,有部分分了,而且不再是固定十个点了(部分分只说这几个点满足这几个性质,以为十个点的我还高兴了一会,一提交,...),除此之外居然赛后还排名了.这 ...

随机推荐

  1. 四、c++总结------linux多线程服务端编程

  2. Spring Cloud Gateway原理

    1.使用 compile 'org.springframework.cloud:spring-cloud-starter-gateway' 2.包结构 actuate中定义了一个叫GatewayCon ...

  3. Pinpoint 编译环境搭建(Pinpoint系列一)

    本文基于 Pinpoint 2.1.0 版本 目录 一.2.1.0 版本特性 二.编译环境准备 三.编译注意事项 四.编译目录 五.注意事项 新版本的内容参考官方文档, Pinpoint的整个搭建是历 ...

  4. 在Linux中输入命令时打错并按了enter

    今天在Linux中输入命令时,打错一个单词了,之后出现一串串的~,按ESC也没用, 并在底部出现:quit<enter> to exit vim 解决办法: 按几下 esc 确保 vim ...

  5. JWT(JSON Web Token)入门

    简介 JSON Web Token(缩写 JWT)是目前最流行的跨域认证解决方案 一.跨域认证的问题 互联网服务离不开用户认证.一般流程是下面这样. 1.用户向服务器发送用户名和密码. 2.服务器验证 ...

  6. Codeforces375D Tree and Queries

    dsu on tree 题目链接 点我跳转 题目大意 给定一棵 \(n\) 个节点的树,根节点为 \(1\).每个节点上有一个颜色 \(c_i\) \(m\) 次询问. 每次询问给出 \(u\) \( ...

  7. 攻克solo第七课(Randy Rhoads风格)

    本期文章,笔者将通过Guitar Pro 7吉他软件跟大家分享一下Randy Rhoads的solo句子. 相信很多精研电吉他的朋友都会听过这个一手把Ozzy Osbourne从离开黑色安息日乐队的深 ...

  8. 怎么在word里编辑插入数学公式?

    大学时代我们都有一个共同的噩梦--高数.每次上完高数课都有一些数学公式.可是我们最难的就是想用电脑在word中做笔记的时候该怎样用word插入公式.Word中自有的公式太少,新公式又太难输入.这也是一 ...

  9. 如何在MathType输入手写体a

    作为强大的数学公式编辑器,MathType中还能设置各种样式,还支持自定义设置,给大家编辑公式提供了更多的便利.那么有用户问:要如何将输入的字母a变为手写体呢?下面就来一起学习. 输入手写体a的步骤如 ...

  10. jQuery 第四章 实例方法 DOM操作_基于jQuery对象增删改查相关方法

    .next() .prev() .nextAll() .prevAll() .prevUntil() .nextUntli() .siblings() .children() .parent() .p ...