pandas的学习6-合并concat
import pandas as pd
import numpy as np '''
pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.
而且concat中有很多参数可以调整,合并成你想要的数据形式.
''' # todo axis (合并方向) # axis=0是预设值,因此未设定任何参数时,函数默认axis=0。 #定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d']) #concat纵向合并
res = pd.concat([df1, df2, df3], axis=0) #vertical stack #打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 0 1.0 1.0 1.0 1.0
# 1 1.0 1.0 1.0 1.0
# 2 1.0 1.0 1.0 1.0
# 0 2.0 2.0 2.0 2.0
# 1 2.0 2.0 2.0 2.0
# 2 2.0 2.0 2.0 2.0 # todo 仔细观察会发现结果的index是0, 1, 2, 0, 1, 2, 0, 1, 2,若要将index重置,请看例子二。 # ignore_index (重置 index) #承上一个例子,并将index_ignore设定为True
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True) #打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 2.0 2.0 2.0 2.0
# 7 2.0 2.0 2.0 2.0
# 8 2.0 2.0 2.0 2.0
# 结果的index变0, 1, 2, 3, 4, 5, 6, 7, 8 '''
join (合并方式)
join='outer'为预设值,因此未设定任何参数时,函数默认join='outer'。
此方式是依照column来做纵向合并,有相同的column上下合并在一起,其他独自的column个自成列,原本没有值的位置皆以NaN填充。
'''
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) #纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer') print(res)
# a b c d e
# 1 0.0 0.0 0.0 0.0 NaN
# 2 0.0 0.0 0.0 0.0 NaN
# 3 0.0 0.0 0.0 0.0 NaN
# 2 NaN 1.0 1.0 1.0 1.0
# 3 NaN 1.0 1.0 1.0 1.0
# 4 NaN 1.0 1.0 1.0 1.0 #todo 原理同上个例子的说明,但只有相同的column合并在一起,其他的会被抛弃。 #承上一个例子 #纵向"内"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='inner') #打印结果
print(res)
# b c d
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 0.0 0.0 0.0
# 2 1.0 1.0 1.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0 #重置index并打印结果
res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)
# b c d
# 0 0.0 0.0 0.0
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0
# 5 1.0 1.0 1.0 # join_axes (依照 axes 合并) 坐标轴合并 #定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) #依照`df1.index`进行横向合并
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])#根据谁的index来的 #打印结果
print(res)
#index的原因
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 #移除join_axes,并打印结果
res = pd.concat([df1, df2], axis=1)
print(res)
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0 # append (添加数据) 纵向才是添加数据嘛,横向是增加数据的维度,就不是append了
# append只有纵向合并,没有横向合并。 #定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d']) #将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0 #合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 1.0 1.0 1.0 1.0
# 7 1.0 1.0 1.0 1.0
# 8 1.0 1.0 1.0 1.0 #合并series,将s1合并至df1,以及重置index,并打印出结果
res = df1.append(s1, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 2.0 3.0 4.0
concat是一种基本的合并方式,但是concat有很多参数可以调整
axis=0是预设值,也就是默认就为vertical合并
ignore_index=true 这个参数用于忽略以前的index,生成新的有序的index
join合并 join=‘outer’为预设值,按照column做纵向合并,去重功能,不够的用nan填充
inner模式就不存在nan,相当于outer模式合并后去掉有nan的所有列
join_axes是concat的一个参数,join_axes=[df1.index]表示按照df1的index进行合并,axis=1(表示横向 增加维度)
比如df1有1,2,3 ,但是df2只有2,3,4此时会舍弃df2的4,并且后半部分1为空
append为添加数据 vertical stack
出处:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-6-pd-concat/
pandas的学习6-合并concat的更多相关文章
- 【转】Pandas学习笔记(五)合并 concat
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- pandas的学习总结
pandas的学习总结 作者:csj更新时间:2017.12.31 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 1 ...
- pandas连接多个表格concat()函数
网易云课堂该课程链接地址 https://study.163.com/course/courseMain.htm?share=2&shareId=400000000398149&cou ...
- Pandas 合并 concat
pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式. 1.axis(合并方向):axis=0 ...
- python数据表的合并(python pandas join() 、merge()和concat()的用法)
merage# pandas提供了一个类似于关系数据库的连接(join)操作的方法<Strong>merage</Strong>,可以根据一个或多个键将不同DataFrame中 ...
- Pandas中DataFrame数据合并、连接(concat、merge、join)之merge
二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面 ...
- Pandas中DataFrame数据合并、连接(concat、merge、join)之concat
一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, key ...
- Pandas中DataFrame数据合并、连接(concat、merge、join)之join
pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuff ...
- pandas时间序列学习笔记
目录 创建一个时间序列 pd.date_range() info() asfred() shifted(),滞后函数 diff()求差分 加减乘除 DataFrame.reindex() 通过data ...
随机推荐
- 回收站都找不到的文件,EasyRecovery帮你找
"有人相爱,有人看海,有人深夜两点还在找文件."没错,有人正是不才本人. 细数下来,这已经是本人第五六七八次丢文件了,每次丢的原因很奇怪:删错了.保存完找不到了.或者没有原因就那样 ...
- 关于Boom 3D预设音效的妙用,如何鉴赏音乐流派
音乐流派,亦可理解为音乐的曲风.类型.不同的音乐流派表达的音乐形式也更不相同.例如民族音乐.古典音乐等这种传统乐器的应用,流行音乐则更注重节奏.韵律的变化.带给我们的音乐感受也不尽相同. Boom 3 ...
- Java反射——根据配置文件,实例化对象
案例:根据配置文件,实例化对象 src下创建一个"配置文件"config.txt,内容如下: className=ahjava.p07reflect.Cat package ahj ...
- kafka入门之broker--通信协议
kafka的通讯协议是基于tcp之上的二进制协议,所有类型的请求和响应都是结构化的,由不同的初始类型构成.kafka使用这组协议完成各个功能的实现. 单个kafka client通常需要同时连接多个b ...
- AgileConfig-轻量级配置中心 1.1.0 发布,支持应用间配置继承
AgileConfig轻量级配置中心自第一个版本发布不知不觉已经半年了.在并未进行什么推广的情况下收到了250个star,对我有很大的鼓舞,并且也有不少同学试用,并且给出了宝贵的意见,非常感谢他们.其 ...
- Docker 入门介绍
Docker是什么 从发布到现在 docker一直很受关注,在一定程度是改变了软件行业 如果你还不知道 docker 是什么是不是有点out了,接下来我们来介绍docker是什么,解决了什么问题,好处 ...
- 口述完SpringMVC执行流程,面试官就让同事回家等消息了
Srping MVC 执行流程真的是老生常谈的话题了,最近同事小刚出去面试,前面面试官相继问了几个 Spring 相关的问题,但当面试官问他,你知道 Srping MVC 的执行流程吗?小刚娴熟的巴拉 ...
- Cys_Control(五) MMenu
一.查看Menu原样式 1.通过Blend查看Menu原有样式 Menu的原有样式结构较为简单,由边框Border及集合控件 ItemsPresenter 组成,原有样式如下 <Style x: ...
- 异步任务-----django-celery
异步任务 ---- django-celery 大家的知道celery的使用,网上也有很多的教程.因为最近在使用django来完成项目,无意间发现发现有个东西叫django-celery,比cel ...
- django 不使用序列化器时进行查询结果序列化
在app01views中添加 class User1(View): def post(self,request): user=User.objects.all() list=[] for i in u ...