题目描述

一棵二叉树可以按照如下规则表示成一个由0、1、2组成的字符序列,我们称之为“二叉树序列S”:

0 该树没有子节点 1S1 该树有一个子节点,S1为其二叉树序列 1S1S2 该树有两个子节点,S1,S2分别为两个二叉树的序列 例如,下图所表示的二叉树可以用二叉树序列S=21200110来表示。

你的任务是要对一棵二叉树的节点进行染色。每个节点可以被染成红色、绿色或蓝色。并且,一个节点与其子节点的颜色必须不同,如果该节点有两个子节点,那么这两个子节点的颜色也必须不相同。给定一棵二叉树的二叉树序列,请求出这棵树中最多和最少有多少个点能够被染成绿色。

题目大意:

给你一棵树,相邻点不同色,共三色,求一种颜色最多最少涂法。
分析:

根据题目条件列转移方程:

性质1.因为有三种颜色,所以如果父节点不是绿,那么两儿子必有一个是绿。(废话1)

性质2.如果父节点是绿,而两个子节点必然都不绿,且不冲突。(废话2)

我们不妨设置两种情况(新开一维度):dp[ rt ][ 0 ]表示 rt这个点不是绿色,dp[ rt ][ 1 ]表示是绿色,dp数组的值表示以这个点为根节点的树最多涂几个绿点。
我们可以给每一个节点设置初始值:dp[ rt ][ 0 ]=0,dp[ rt ][ 1 ]=1(很好理解吧。。。)

转移方程:1. dp[ rt ][ 1]=dp[ lch[ rt ] ] [ 0 ]+dp[ rch[ rt ] ] [ 0 ]+1;

      该点涂绿情况:左儿子不涂绿情况+右儿子不涂绿情况+自己;

      (如果这个点涂成绿色,那么左右两点都不可以涂成绿色,且这样的左右两点不冲突情况必定存在,即性质2)

     2.dp[ rt ][ 0 ]=min/max ( dp[ lch[ rt ] ] [ 0 ]+dp[ rch[ rt ] ] [ 1 ]  ,  dp[ lch[ rt ] ] [ 1]+dp[ rch[ rt ] ] [ 0 ] );

      该点不涂绿情况:左儿子不涂绿,右儿子涂绿或者左儿子涂绿,右儿子不涂绿。

      (也是必然条件,符合上面性质1)

然后就是dfs了

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=1e6+10;
char s[maxn];int a[maxn];
int cnt=1;//用来确定dfs序,因为1是根了,所以已经有一个了(废话) int lch[maxn],rch[maxn],dp[maxn][2];
void build(int rt){//递归建树,自行理解,代码不唯一
if(a[rt]==1){
lch[rt]=++cnt;
build(lch[rt]);
}else if(a[rt]==2){
lch[rt]=++cnt;
build(lch[rt]);
rch[rt]=++cnt;
build(rch[rt]);
}else if(a[rt]==0){
return;
}
}
void dfsmax(int rt){
dp[rt][1]=1;dp[rt][0]=0;
if(lch[rt])dfsmax(lch[rt]);
if(rch[rt])dfsmax(rch[rt]);
dp[rt][1]=1+dp[lch[rt]][0]+dp[rch[rt]][0];
dp[rt][0]=max(dp[lch[rt]][1]+dp[rch[rt]][0],dp[lch[rt]][0]+dp[rch[rt]][1]);
//转移方程
}
void dfsmin(int x){
dp[x][1]=1;dp[x][0]=0;
if(lch[x]) dfsmin(lch[x]);
if(rch[x]) dfsmin(rch[x]);
dp[x][1]=1+dp[lch[x]][0]+dp[rch[x]][0];
dp[x][0]=min(dp[lch[x]][1]+dp[rch[x]][0],dp[lch[x]][0]+dp[rch[x]][1]);
}
int main(){
scanf("%s",s);
int len=strlen(s);
for(int i=0;i<len;i++){
a[i+1]=s[i]-'0';//字符数组转整形,可忽略
}
build(1);
dfsmax(1);//以1为根节点建树并进行下列操作
printf("%d ",max(dp[1][1],dp[1][0]));//根节点里面保存的就是整个树的情况了
memset(dp,0,sizeof(dp));//记得初始化!!!
dfsmin(1);
printf("%d ",min(dp[1][1],dp[1][0]));
return 0;
}

三色二叉树 ---伪树形dp的更多相关文章

  1. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

  2. 三色二叉树_树形DP

    Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description 一棵二叉树可以按照如下规则表示成一个由0.1.2组成的字符序 ...

  3. 洛谷P2585 [ZJOI2006]三色二叉树(树形dp)

    传送门 设$dp[u][i]$表示点$u$颜色为$i$时最多(最少)的绿点个数(这里用$0$表示绿点) 然后直接用树形dp就可以了 记得把情况讨论清楚 //minamoto #include<b ...

  4. BZOJ-1864-[Zjoi2006]三色二叉树(树形dp)

    Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色. Sample ...

  5. 1864. [ZJOI2006]三色二叉树【树形DP】

    Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色. Sample ...

  6. BZOJ 1864:[Zjoi2006]三色二叉树(树DP)

    三色二叉树 问题描述 输入 仅有一行,不超过500000个字符,表示一个二叉树序列. 输出 输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色. 样例输入 1122002010 ...

  7. BZOJ 1864 三色二叉树 - 树型dp

    传送门 题目大意: 给一颗二叉树染色红绿蓝,父亲和儿子颜色必须不同,两个儿子颜色必须不同,问最多和最少能染多少个绿色的. 题目分析: 裸的树型dp:\(dp[u][col][type]\)表示u节点染 ...

  8. 【BZOJ-1864】三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 659  Solved: 469[Submit][Status] ...

  9. 【BZOJ1864】[Zjoi2006]三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最 ...

随机推荐

  1. MongoDB基础总结

    1.数据可基本操作 1. 创建数据库 use  databaseName 选择一个数据库,如果数据库不存在就自动创建一个数据库 只有向数据库中插入数据时,数据库才会被真实创建出来,而当数据库中没有数据 ...

  2. Python数据类型方法整理

      前言:主要是对Python数据类型做一个整理,部分知识点源于<python3程序开发指南(第二版)>   一.Python的关键要素 1.1 要素1:数据类型  int类型 str类型 ...

  3. 快速生成网络mp4视频缩略图技术

    背景 由于网络原因,在下载视频之前我们往往会希望能够先生成一些视频的缩略图,大致浏览视频内容,再确定是否应花时间下载.如何能够快速得到视频多个帧的缩略图的同时尽量少的下载视频的内容,是一个值得研究的问 ...

  4. JS进阶 | 解决JQ keyup事件延迟的问题

    写在前面 在使用keyup事件时,存在一个问题,假如想要做出类似于表单验证的demo:表单输入账号 “xxx” 后  再去ajax异步去后台数据库匹配,但是keyup事件的原理是每次键盘事件弹起就会检 ...

  5. JVM-STW-stop the world

    Stop The World Stop一the一World,简称STW,指的是Gc事件发生过程中,会产生应用程序的停顿.停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称 ...

  6. hystrix文档翻译之配置

    Hystrix使用Archaius作为配置的默认实现,下面介绍的是HystrixPropertiesStrategy的默认实现,你也可以通过插件方式重新实现. 每一个配置有四个级别: 全局默认 当下面 ...

  7. 属性序列化自定义与字母表排序-JSON框架Jackson精解第3篇

    Jackson是Spring Boot默认的JSON数据处理框架,但是其并不依赖于任何的Spring 库.有的小伙伴以为Jackson只能在Spring框架内使用,其实不是的,没有这种限制.它提供了很 ...

  8. Spring循环依赖的三种方式

    ​ 引言:循环依赖就是N个类中循环嵌套引用,如果在日常开发中我们用new 对象的方式发生这种循环依赖的话程序会在运行时一直循环调用,直至内存溢出报错.下面说一下Spring是如果解决循环依赖的. 第一 ...

  9. 浅谈Java多线程

    线程与进程 什么是进程? 当一个程序进入内存中运行起来它就变为一个进程.因此,进程就是一个处于运行状态的程序.同时进程具有独立功能,进程是操作系统进行资源分配和调度的独立单位. 什么是线程? 线程是进 ...

  10. CUMTCTF'2020 已做wp

    三天的比赛终于结束了,不知道有没有睡10个小时,感觉像中了魔一样,但也很享受这种感觉,除了没有能和我一起琢磨题目朋友.. 就最终结果而言还是有一些可惜,明明号称擅长web和misc反而是得分比例最小的 ...