D. Almost Arithmetic Progression
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp likes arithmetic progressions. A sequence [a1,a2,…,an][a1,a2,…,an] is called an arithmetic progression if for each ii (1≤i<n1≤i<n ) the value ai+1−aiai+1−ai is the same. For example, the sequences [42][42] , [5,5,5][5,5,5] , [2,11,20,29][2,11,20,29] and [3,2,1,0][3,2,1,0] are arithmetic progressions, but [1,0,1][1,0,1] , [1,3,9][1,3,9] and [2,3,1][2,3,1] are not.

It follows from the definition that any sequence of length one or two is an arithmetic progression.

Polycarp found some sequence of positive integers [b1,b2,…,bn][b1,b2,…,bn] . He agrees to change each element by at most one. In the other words, for each element there are exactly three options: an element can be decreased by 11 , an element can be increased by 11 , an element can be left unchanged.

Determine a minimum possible number of elements in bb which can be changed (by exactly one), so that the sequence bb becomes an arithmetic progression, or report that it is impossible.

It is possible that the resulting sequence contains element equals 00 .

Input

The first line contains a single integer nn(1≤n≤100000)(1≤n≤100000) — the number of elements in bb .

The second line contains a sequence b1,b2,…,bnb1,b2,…,bn(1≤bi≤109)(1≤bi≤109) .

Output

If it is impossible to make an arithmetic progression with described operations, print -1. In the other case, print non-negative integer — the minimum number of elements to change to make the given sequence becomes an arithmetic progression. The only allowed operation is to add/to subtract one from an element (can't use operation twice to the same position).

Examples
Input

Copy
4
24 21 14 10
Output

Copy
3
Input

Copy
2
500 500
Output

Copy
0
Input

Copy
3
14 5 1
Output

Copy
-1
Input

Copy
5
1 3 6 9 12
Output

Copy
1
Note

In the first example Polycarp should increase the first number on 11 , decrease the second number on 11 , increase the third number on 11 , and the fourth number should left unchanged. So, after Polycarp changed three elements by one, his sequence became equals to [25,20,15,10][25,20,15,10] , which is an arithmetic progression.

In the second example Polycarp should not change anything, because his sequence is an arithmetic progression.

In the third example it is impossible to make an arithmetic progression.

In the fourth example Polycarp should change only the first element, he should decrease it on one. After that his sequence will looks like [0,3,6,9,12][0,3,6,9,12] , which is an arithmetic progression.

解题思路:等差数列的公差相等, 所以前两个数就可以确定公差,记录后面的数满足公差需要多少步即可,O(6 * n)的复杂度。

附ac代码:

 1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 #include <string>
5 #include <cmath>
6 #include <string>
7 #include <iostream>
8 #include <map>
9 #include <queue>
10 #include <stack>
11 #include <cstdlib>
12 const int maxn = 3 * 1e5 + 10;
13 const int inf = 0x3f3f3f3f;
14
15 using namespace std;
16 typedef long long ll;
17 const ll mod = 1e9 + 7;
18 int nu[maxn];
19 int tem[maxn];
20 queue<int>q;
21
22 int main(int argc, const char * argv[]) {
23 int n;
24 scanf("%d", &n);
25 for(int i = 0; i < n; ++i)
26 {
27 scanf("%d", &nu[i]);
28 }
29 if(n <= 2)
30 {
31 puts("0");
32 return 0;
33 }
34 int i, j, k;
35 int ans = inf;
36 for(i = -1; i <= 1; ++i)
37 {
38 for(j = -1; j <= 1; ++j)
39 {
40 tem[0] = nu[0] + i;
41 tem[1] = nu[1] + j;
42 int d = tem[1] - tem[0];
43 int cnt = abs(i) + abs(j);
44 for(k = 2; k < n; ++k)
45 {
46 int u = nu[k] - tem[k - 1];
47 tem[k] = d + tem[k - 1];
48 if(u == d) continue;
49 if(abs(u - d) <= 1)
50 {
51 cnt++;
52 // printf("%d ", tem[k]);
53 }
54 else break;
55 }
56 if(k == n)
57 {
58 ans = min(cnt, ans);
59 }
60 }
61 }
62 if(ans == inf) puts("-1");
63 else
64 printf("%d\n", ans);
65 return 0;
66 }

codeforces - 978D【思维】的更多相关文章

  1. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  2. Codeforces 1060E(思维+贡献法)

    https://codeforces.com/contest/1060/problem/E 题意 给一颗树,在原始的图中假如两个点连向同一个点,这两个点之间就可以连一条边,定义两点之间的长度为两点之间 ...

  3. Queue CodeForces - 353D (思维dp)

    https://codeforces.com/problemset/problem/353/D 大意:给定字符串, 每一秒, 若F在M的右侧, 则交换M与F, 求多少秒后F全在M左侧 $dp[i]$为 ...

  4. codeforces 1244C (思维 or 扩展欧几里得)

    (点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w ...

  5. CodeForces - 417B (思维题)

    Crash Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. CodeForces - 417A(思维题)

    Elimination Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit  ...

  7. CodeForces 625A 思维

    题意是说一个人喝酒 有两种办法 买塑料瓶的 a块钱 喝了就没了 或者是买玻璃瓶的b块钱 喝完还能卖了瓶子c块钱 求最多能喝多少瓶 在开始判断一次 a与b-c的关系 即两种方式喝酒的成本 如果a< ...

  8. Vladik and Complicated Book CodeForces - 811B (思维实现)

    Vladik had started reading a complicated book about algorithms containing n pages. To improve unders ...

  9. The Contest CodeForces - 813A (思维)

    Pasha is participating in a contest on one well-known website. This time he wants to win the contest ...

随机推荐

  1. MongoDB分片集群部署方案

    前言 副本集部署是对数据的冗余和增加读请求的处理能力,却不能提高写请求的处理能力:关键问题是随着数据增加,单机硬件配置会成为性能的瓶颈.而分片集群可以很好的解决这一问题,通过水平扩展来提升性能.分片部 ...

  2. 如何让淘宝不卡顿? 读写比例 动态扩容 分布式化路线 mysql 优化

    作为数据库核心成员,如何让淘宝不卡顿? https://mp.weixin.qq.com/s/l-qXV8NI6ywnUvp3S6an3g

  3. c++ 三五法则 自己理解

    简介 三五法则规定了什么时候需要  1 拷贝构造函数   2 拷贝赋值函数  3 析构函数 1. 需要析构函数的类也需要拷贝构造函数和拷贝赋值函数. 通常,若一个类需要析构函数,则代表其合成的析构函数 ...

  4. QT串口助手(四):数据发送

    作者:zzssdd2 E-mail:zzssdd2@foxmail.com 一.前言 开发环境:Qt5.12.10 + MinGW 实现的功能 串口数据的发送 ascii字符与hex字符的相互转换 自 ...

  5. PostgreSQL创建只读权限的用户

    1.创建只读角色 CREATE ROLE readaccess; 2.授予对现有表的访问权限 GRANT USAGE ON SCHEMA public TO readaccess; GRANT SEL ...

  6. CF1209A

    所谓染色,并使同颜色数都能被当前颜色中最小的数整除 也就是说,把能被某个数整除的所有数放在一起为一组,问共有几组 开始我想写个并查集但是很懒,看数据范围小的可怜,那我们写个暴力看看 因为每组的共因数都 ...

  7. 最简单直接地理解Java软件设计原则之接口隔离原则

    理论性知识 定义 接口隔离原则, Interface Segregation Principle,(ISP). 一个类对应一个类的依赖应该建立在最小的接口上: 建立单一接口,不要建立庞大臃肿的接口: ...

  8. apache https 双向证书生成

    Https分单向认证和双向认证 单向认证表现形式:网站URL链接为https://xxx.com格式 双向认证表现心事:网站URL链接为https://xxx.com格式,并且需要客户端浏览器安装一个 ...

  9. c++复习笔记(4)

    这一篇是另一篇各种琐碎东西的笔记. 类型转换可以通过类型转换函数,或者构造函数来实现.但是一般来说类型转换指的是类型转换函数. 类型转换函数不需要声明输出类型(因为输出类型是固定的),也没有参数,同时 ...

  10. Microsoft Exchange远程代码执行漏洞(CVE-2020-16875)

    Microsoft Exchange远程代码执行漏洞(CVE-2020-16875) 漏洞信息: 由于对cmdlet参数的验证不正确,Microsoft Exchange服务器中存在一个远程执行代码漏 ...