Java并发包源码学习系列:同步组件Semaphore源码解析
- Semaphore概述及案例学习
- 类图结构及重要字段
- void acquire()
- void acquire(int permits)
- void acquireUninterruptibly()
- void acquireUninterruptibly(int permits)
- boolean tryAcquire()
- boolean tryAcquire(int permits)
- boolean tryAcquire(int permits, long timeout, TimeUnit unit)
- void release()
- void release(int permits)
- 其他方法
- 总结
- 参考阅读
Semaphore概述及案例学习
Semaphore信号量用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理地使用公共资源。
public class SemaphoreTest {
private static final int THREAD_COUNT = 30;
private static ExecutorService threadPool = Executors.newFixedThreadPool(THREAD_COUNT);
private static Semaphore s = new Semaphore(10); //10个许可证数量,最大并发数为10
public static void main(String[] args) {
for(int i = 0; i < THREAD_COUNT; i ++){ //执行30个线程
threadPool.execute(new Runnable() {
@Override
public void run() {
s.tryAcquire(); //尝试获取一个许可证
System.out.println("save data");
s.release(); //使用完之后归还许可证
}
});
}
threadPool.shutdown();
}
}
- 创建一个大小为30的线程池,但是信号量规定在10,保证许可证数量为10。
- 每次线程调用
tryAcquire()或者acquire()方法都会原子性的递减许可证的数量,release()会原子性递增许可证数量。
类图结构及重要字段

public class Semaphore implements java.io.Serializable {
private static final long serialVersionUID = -3222578661600680210L;
/** All mechanics via AbstractQueuedSynchronizer subclass */
private final Sync sync;
abstract static class Sync extends AbstractQueuedSynchronizer {
// permits指定初始化信号量个数
Sync(int permits) {
setState(permits);
}
// ...
}
static final class NonfairSync extends Sync {...}
static final class FairSync extends Sync {...}
// 默认采用非公平策略
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
// 可以指定公平策略
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
//...
}
- 基于AQS,类似于ReentrantLock,Sync继承自AQS,有公平策略和非公平策略两种实现。
- 类似于CountDownLatch,state在这里也是通过构造器指定,表示初始化信号量的个数。
本篇文章阅读需要建立在一定的AQS基础之上,这边推荐几篇前置文章,可以瞅一眼:
void acquire()
调用该方法时,表示希望获取一个信号量资源,相当于acquire(1)。
如果当前信号量个数大于0,CAS将当前信号量值减1,成功后直接返回。
如果当前信号量个数等于0,则当前线程将被置入AQS的阻塞队列。
该方法是响应中断的,其他线程调用了该线程的interrupt()方法,将会抛出中断异常返回。
// Semaphore.java
public void acquire() throws InterruptedException {
// 传递的 arg 为 1 , 获取1个信号量资源
sync.acquireSharedInterruptibly(1);
}
// AQS.java
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
// 线程被 中断, 抛出中断异常
if (Thread.interrupted())
throw new InterruptedException();
// 子类实现, 公平和非公平两种策略
if (tryAcquireShared(arg) < 0)
// 如果获取失败, 则置入阻塞队列,
// 再次进行尝试, 尝试失败则挂起当前线程
doAcquireSharedInterruptibly(arg);
}
非公平
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
// 这里直接调用Sync定义的 非公平共享模式获取方法
return nonfairTryAcquireShared(acquires);
}
}
abstract static class Sync extends AbstractQueuedSynchronizer {
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
// 获取当前信号量的值
int available = getState();
// 减去需要获取的值, 得到剩余的信号量个数
int remaining = available - acquires;
// 不剩了,表示当前信号量个数不能满足需求, 返回负数, 线程置入AQS阻塞
// 还有的剩, CAS设置当前信号量值为剩余值, 并返回剩余值
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
你会发现,非公平策略是无法保证【AQS队列中阻塞的线程】和【当前线程】获取的顺序的,当前线程是有可能在排队的线程之前就拿到资源,产生插队现象。
公平策略就不一样了,它会通过hasQueuedPredecessors()方法看看队列中是否存在前驱节点,以保证公平性。
公平策略
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
for (;;) {
// 如果队列中在此之前已经有线程在排队了,直接放弃获取
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
void acquire(int permits)
在acquire()的基础上,指定了获取信号量的数量permits。
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
}
void acquireUninterruptibly()
该方法与acquire()类似,但是不响应中断。
public void acquireUninterruptibly() {
sync.acquireShared(1);
}
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
void acquireUninterruptibly(int permits)
该方法与acquire(permits)类似,但是不响应中断。
public void acquireUninterruptibly(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireShared(permits);
}
boolean tryAcquire()
tryAcquire和acquire非公平策略公用一个逻辑,但是区别在于,如果获取信号量失败,或者CAS失败,将会直接返回false,而不会置入阻塞队列中。
一般try开头的方法的特点就是这样,尝试一下,成功是最好,失败也不至于被阻塞,而是立刻返回false。
public boolean tryAcquire() {
return sync.nonfairTryAcquireShared(1) >= 0;
}
abstract static class Sync extends AbstractQueuedSynchronizer {
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
boolean tryAcquire(int permits)
相比于普通的tryAcquire(),指定了permits的值。
public boolean tryAcquire(int permits) {
if (permits < 0) throw new IllegalArgumentException();
return sync.nonfairTryAcquireShared(permits) >= 0;
}
boolean tryAcquire(int permits, long timeout, TimeUnit unit)
相比于tryAcquire(int permits),增加了超时控制。
public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
}
void release()
将信号量值加1,如果有线程因为调用acquire方法而被阻塞在AQS阻塞队列中,将根据公平策略选择一个信号量个数满足需求的线程唤醒,线程唤醒后也会尝试获取新增的信号量。
参考文章:Java并发包源码学习系列:AQS共享模式获取与释放资源
// Semaphore.java
public void release() {
sync.releaseShared(1);
}
// AQS.java
public final boolean releaseShared(int arg) {
// 尝试释放锁
if (tryReleaseShared(arg)) {
// 释放成功, 唤醒AQS队列里面最先挂起的线程
// https://blog.csdn.net/Sky_QiaoBa_Sum/article/details/112386838
doReleaseShared();
return true;
}
return false;
}
// Semaphore#Sync.java
abstract static class Sync extends AbstractQueuedSynchronizer {
protected final boolean tryReleaseShared(int releases) {
for (;;) {
// 获取当前信号量
int current = getState();
// 期望加上releases
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
// CAS操作,更新
if (compareAndSetState(current, next))
return true;
}
}
}
void release(int permits)
和release()相比指定了permits的值。
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}
其他方法
Semaphore还提供其他一些方法,实现比较简单,这边就简单写一下吧:
// 返回此信号量中当前可用的许可证数量, 其实就是得到当前的 state值 getState()
public int availablePermits() {
return sync.getPermits();
}
// 将state更新为0, 返回0
public int drainPermits() {
return sync.drainPermits();
}
// 减少reduction个许可证
protected void reducePermits(int reduction) {
if (reduction < 0) throw new IllegalArgumentException();
sync.reducePermits(reduction);
}
// 判断公平策略
public boolean isFair() {
return sync instanceof FairSync;
}
// 判断是否有线程证在等待获取许可证
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
// 返回正在等待获取许可证的线程数
public final int getQueueLength() {
return sync.getQueueLength();
}
// 返回所有等待获取许可证的线程集合
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
总结
Semaphore信号量用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理地使用公共资源。
- 基于AQS,类似于ReentrantLock,Sync继承自AQS,有公平策略和非公平策略两种实现。
- 类似于CountDownLatch,state在这里也是通过构造器指定,表示初始化信号量的个数。
每次线程调用tryAcquire()或者acquire()方法都会原子性的递减许可证的数量,release()会原子性递增许可证数量,只要有许可证就可以重复使用。
参考阅读
- 《Java并发编程之美》
- 《Java并发编程的艺术》
Java并发包源码学习系列:同步组件Semaphore源码解析的更多相关文章
- Java并发包源码学习系列:CLH同步队列及同步资源获取与释放
目录 本篇学习目标 CLH队列的结构 资源获取 入队Node addWaiter(Node mode) 不断尝试Node enq(final Node node) boolean acquireQue ...
- Java并发包源码学习系列:同步组件CountDownLatch源码解析
目录 CountDownLatch概述 使用案例与基本思路 类图与基本结构 void await() boolean await(long timeout, TimeUnit unit) void c ...
- Java并发包源码学习系列:同步组件CyclicBarrier源码解析
目录 CyclicBarrier概述 案例学习 类图结构及重要字段 内部类Generation及相关方法 void reset() void breakBarrier() void nextGener ...
- Java并发包源码学习系列:AQS共享式与独占式获取与释放资源的区别
目录 Java并发包源码学习系列:AQS共享模式获取与释放资源 独占式获取资源 void acquire(int arg) boolean acquireQueued(Node, int) 独占式释放 ...
- Java并发包源码学习系列:ReentrantLock可重入独占锁详解
目录 基本用法介绍 继承体系 构造方法 state状态表示 获取锁 void lock()方法 NonfairSync FairSync 公平与非公平策略的差异 void lockInterrupti ...
- Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析
目录 ReadWriteLock读写锁概述 读写锁案例 ReentrantReadWriteLock架构总览 Sync重要字段及内部类表示 写锁的获取 void lock() boolean writ ...
- Java并发包源码学习系列:详解Condition条件队列、signal和await
目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...
- Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类
目录 LockSupport概述 park与unpark相关方法 中断演示 blocker的作用 测试无blocker 测试带blocker JDK提供的demo 总结 参考阅读 系列传送门: Jav ...
- Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析
目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...
随机推荐
- Spark DataSource Option 参数
Spark DataSource Option 参数 1.parquet 2.orc 3.csv 4.text 5.jdbc 6.libsvm 7.image 8.json 9.xml 9.1读选项 ...
- Session (简介、、相关方法、流程解析、登录验证)
Session简介 Session的由来 Cookie虽然在一定程度上解决了"保持状态"的需求,但是由于Cookie本身最大支持4096字节,以及Cookie本身保存在客户端,可能 ...
- Hadoop伪分布式环境搭建+Ubuntu:16.04+hadoop-2.6.0
Hello,大家好 !下面就让我带大家一起来搭建hadoop伪分布式的环境吧!不足的地方请大家多交流.谢谢大家的支持 准备环境: 1, ubuntu系统,(我在16.04测试通过.其他版本请自行测试, ...
- 2019 第十届蓝桥杯大赛软件类省赛 Java A组 题解
2019 第十届蓝桥杯大赛软件类省赛 Java A组 试题A 题解 题目最后一句贴心的提示选手应该使用 long (C/C++ 应该使用 long long). 本题思路很直白,两重循环.外层 ...
- 前n项余数个数和
一:O(n) 计算贡献:前n项中,能被i(1~n)整除的数的个数为(n/i)个,,也就是 i 给前n项中(n/i)个数做了余数 #include<iostream> using names ...
- codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)
Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long a ...
- CodeForces - 948C (前缀和+二分)
博客界面的小人搞不好导致无心写博客 题意:tyd非常喜欢玩雪,下雪下了n天,第i天她会堆一堆大小为Vi的雪堆,但因为天气原因,每堆雪会融化Ti,问每天总共融化了多少雪: 直接上代码+注释 1 #inc ...
- VJ train1 I-彼岸
一道递推题(我这个菜鸡刚开始以为是排列组合) 题目: 突破蝙蝠的包围,yifenfei来到一处悬崖面前,悬崖彼岸就是前进的方向,好在现在的yifenfei已经学过御剑术,可御剑轻松飞过悬崖.现在的问题 ...
- Codeforces Global Round 11 C. The Hard Work of Paparazzi (DP)
题意:有\(r\)X\(r\)的网格图,有\(n\)位名人,会在\(t_i\)时出现在\((x_i,y_i)\),如果过了\(t_i\)名人就会消失,从某一点走到另外一点需要花费的时间是它们之间的曼哈 ...
- AtCoder AIsing Programming Contest 2020 D - Anything Goes to Zero (二进制,模拟)
题意:给你一个长度为\(n\)的\(01\)串,从高位到低位遍历,对该位取反,用得到的十进制数\(mod\)所有位上\(1\)的个数,不断循环直到为\(0\),输出每次遍历时循环的次数. 题解:根据题 ...